
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-1992

Image processing workstation software
development and feature size measurement
methods for NDE X-ray images
Richard Ali Brown
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Brown, Richard Ali, "Image processing workstation software development and feature size measurement methods for NDE X-ray
images" (1992). Retrospective Theses and Dissertations. 17630.
https://lib.dr.iastate.edu/rtd/17630

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/17630?utm_source=lib.dr.iastate.edu%2Frtd%2F17630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

I

i- s ^

V> %

Image processing workstation software development

and feature size measurement methods

for NDE X-ray images

by

Richard Ali Brown

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical Engineering and Computer Engineering
Major: Electrical Engineering

Signatures have been redacted for privacy

AV TTU UkUkV VJll

Ames, Iowa
iversity

1992

www.manaraa.com

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i v

CHAPTER 1: INTRODUCTION 1
1.1 Overview of NDE 1
1.2 Image Processing in NDE 4
1.3 HAPPI: An Integrated NDE Image Processing Environment 6
1.4 Effects of Processing Routines on Feature Size 7

CHAPTER 2: CONTEMPORARY IMAGE PROCESSING TRENDS AND HAPPI’s
DESIGN 10

2.1 Introduction 10
2.2 Contemporary Imaging Trends 10

2.2.1 Hardware Capabilities and Costs 11
2.2.2 Software Standards 14
2.2.3 Other Contemporary Image Processing Packages 20

2.3 HAPPI Design Objectives and Program Features 24

CHAPTER 3: EVALUATION OF HAPPI 3 0
3.1 Introduction 30
3.2 Strengths of HAPPI 30
3.3 Areas for Further Improvement to HAPPI 33

3.3.1 User Interface Enhancements 34
3.3.2 Program Behavior Enhancements 37
3.3.3 Additional Functionality 38
3.3.4 Performance and Code Maintainability

Enhancements 44
3.4 HAPPI 2.0 53

CHAPTER 4: EXTENDING HAPPI 5 6
4.1 Introduction 56
4.2 Required Programming Background 58
4.3 Flow of Control in HAPPI 59
4.4 HAPPI Data Objects 70
4.5 Tools for Manipulating Image Data 78
4.6 Image Processing Support Functions 81
4.7 A General Image Processing Routine Code Template for
HAPPI 83

4.8 Handling Errors, I/O, and Other Details 89
4.9 User Interface Window Types and Management Tools 94
4.10 Writing the Parameter Fetching Routine 97
4.11 Putting it All Together 108

4.11.1 Editing Menus.h 108
4.11.2 Editing Globals.h 112
4.11.3 Editing IPmanager.c 116
4.11.4 Editing Managers.c 124

4.12 Common Programming Errors 140
4.13 Adding New Convolution Kernels to HAPPI 142

www.manaraa.com

Ill

CHAPTER 5: DIGITAL X-RAY IMAGE FORMATION 145
5.1 Introduction 145
5.2 X-ray Radiography 145
5.3 Typical Apparatus for Digital Processing of X-ray Images 150

CHAPTER 6: FEATURE SIZE MEASUREMENT 154
6.1 Introduction 154
6.2 Feature Size Measurement and Edge Detection 154
6.3 Measurement Methods 162

6.3.1 The Program mrowblur 166
6.3.2 Determination of Critical Values of Blur Parameter 171

CHAPTER 7: MEASUREMENT RESULTS 184
7.1 Introduction 184
7.2 Effect of Processing Routines on Feature Size 184

7.2.1 Adaptive Smoothing Filter 187
7.2.2 Kalman Filter 194
7.2.3 Median Filter 197
7.2.4 Root Filter 203
7.2.5 Sigma Filter 205
7.2.6 Lowpass Filter 207
7.2.7 Comparison of Noise Filters and Overall

Characteristics 209
7.2.8 Histogram Equalization 219
7.2.9 Contrast Stretching 222

7.3 Effects of Scattering LSF 224
7.4 Comparison of Edge Location/Feature Sizing Methods with

Sobel Operator 233

CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 235
8.1 Summary 235
8.2 Suggestions for Further Work 237

BIBLIOGRAPHY 239

www.manaraa.com

IV

ACKNOWLEDGEMENTS

The author acknowledges the assistance of his advisor, Dr. John Basart,

in helping define the scope of the work contained herein and in the

preparation of the thesis. Thanks are extended to the substitute committee

members, Dr. Satish Udpa, and Dr. Joseph Gray, for reading an unusually long

thesis in a short amount of time. Portions of this work were supported in part

by United Stated Department of Commerce Grant ITA 87-02.

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

1.1 Overview of NDE

Nondestructive Evaluation, or NDE, is the science of detecting and

characterizing flaws in engineered materials, individual components, and

final assemblies of manufactured items without damaging or destroying them.

NDE is becoming increasingly important to modern society for reasons

discussed below, and its importance is becoming increasingly recognized by

industry, governments, and the public. The field is highly interdisciplinary

in nature, and has no clearly defined boundaries. Its methods range from

simple visual inspection by human eyes to the use of sophisticated energy¬

generating and sensing devices, the data from which may be fed through

signal conditioning equipment to powerful computer systems for processing

by algorithms based on theories in such diverse fields as optics, physiology,

electrical engineering, artificial intelligence & neural networks, statistics,

and computer science.

NDE is important to modern society because of its roles in maintaining

economic vitality and public safety. It has become widely discussed in recent

years that the cost of servicing or replacing a defective manufactured item

increases dramatically with the delay in manufacturing process between the

time that defective components or materials are introduced into an assembly

or sub-assembly and the time that the defects are found. When re-work is

impractical or impossible on a defective finished item, significant amounts of

economic, material, and labor resources are wasted by the inadequacy or

www.manaraa.com

2

failure of components or materials representing a small fraction of the item’s

total cost. Manufacturing process and product quality are increasingly cited

as being crucial to economic competitiveness and vitality; NDE can make

important contributions to attaining this quality.

Modem society is dependent upon a wide variety of large, complicated,

powerful, and potentially dangerous machinery such as airplanes, trains, cars

and trucks, oil refineries, and nuclear power plants. Major malfunctions in

this machinery can be catastrophic. Thus, the possibility of putting such

machinery into service with potentially dangerous defects must be minimized.

Destructive testing of samples of materials and components can tell a

manufacturer something about the probability distributions of those

materials' and components' properties (destructive testing of all materials and

components would obviously result in nothing being manufactured).

However, even though we may know these distributions accurately (and this is

very seldom the case), we are still betting human lives on the odds that we

calculate. A manufacturer of high-liability machinery must inspect as

thoroughly as is practical every single critical component or piece of material

used in every product that goes out the door; statistical outliers can not be

tolerated. Also, because such machinery is inevitably affected by the

enormous forces it generates and absorbs and the hostile environments in

which it often serves, it is necessary to perform periodic inspections in the

field; the purpose of these is to detect damage before it becomes critical and to

predict remaining safe lifetime. The in-service inspection techniques must

obviously be non-destructive in nature. In most cases, the design lifetime of a

complex machine is highly empirical and is often "fudged", or extremely

www.manaraa.com

3

conservatively estimated. The benefits of continued service from a machine

and the cost of its replacement make it far more economical to continue with

periodic inspections than to take the machine out of service simply because it

is past its design lifetime. Since the destructive-testing-of-samples approach

is unacceptable for high-liability machines, and because of the safety and

economic benefits of in-service inspections, NDE techniques have become

increasingly important for public safety.

In general, an NDE inspection system consists of an energy source, an

energy sensor (which may not necessarily sense the same kind of energy

produced by the energy source), signal conditioning and analysis equipment

(optional, depending on the application), and a display device. This is shown

schematically in Figure 1.1. Conclusions about the specimen under test are

drawn from the sensor measurements and an understanding of the interaction

between the source energy and the specimen. The most widely used NDE

methods may be distinguished by the energy sources they employ:

electromagnetic, ultrasonic, and X-ray. Other methods include, but are not

limited to, fluorescent dye penetrants, nuclear magnetic resonance,

holography, and thermography. Often, as is the case with x-ray radiographic

methods, a two-dimensional array of data, or image, representing a projection

of the spatial distribution of some property of the specimen under test, is

produced by the sensor. This image may be used by an inspector to visualize

the size and location of a flaw within the specimen, and to determine its nature

and severity.

www.manaraa.com

4

Incident energy Transmitted,

re-emitted,
mode-converted,
etc. energy

Figure 1.1. General NDE inspection system

1.2 Image Processing in NDE

Image processing is the science of manipulating two-dimensional

arrays of data for purposes of representation, storage, transmission, and

extraction of information from the data. Image processing may be used to

great advantage in NDE applications. The image formed by a sensor will

typically contain both useful and useless information. "Useful" information is

directly related to specimen properties we wish to measure; all other

information produced by the sensor is useless "noise" and may hamper the

perception and interpretation of the information of interest. The broad and

interdisciplinary nature of NDE is due to the vast variety of materials (and

their unique shapes and properties) that require inspection. Image

processing techniques for NDE, in turn, are driven by this variety, and are

consequently quite varied and specialized. No single processing algorithm or

small group of algorithms can be regarded as generally applicable to all NDE

image processing needs.

www.manaraa.com

5

We may roughly divide image processing techniques into three levels of

robustness: (1) qualitative enhancement, (2) quantitative measurement and

estimation, and (3) automated flaw detection, classification, and measurement.

At the simplest level are techniques which qualitatively enhance an image.

These algorithms often are based on physiological considerations of human

visual perception, and may or may not preserve the relationship between the

specimen's physical properties and the image intensity level; their purpose is

mainly to make it easier for a human inspector to locate suspicious areas in the

image. Examples of such algorithms are thresholding, pixel inversion,

histogram equalization, and adaptive histogram equalization. More robust,

quantitative techniques of measurement and estimation may be employed

when consistent and objective information is to be extracted from an image.

The image is manipulated with well-defined mathematical operations, usually

based on theory which respects the relationship between the image intensity

and the specimen properties, and the result is often a well-defined quantity

that is not open to different interpretations by different inspectors. Examples

of such techniques are statistical noise filtering, stereographic flaw depth

reconstruction, and some of the flaw sizing techniques used in this work. At

the highest level, automatic flaw detection, classification, and measurement

techniques attempt to mimic the experienced eye of the NDE inspector, using

information from qualitative and quantitative analyses as input to higher-

level algorithms based on pattern recognition principles. These techniques

tend to be the most highly specialized and are developed for very specific NDE

inspection situations. The work discussed in this thesis pertains to techniques

at the first two levels of robustness discussed above, qualitative enhancement

www.manaraa.com

6

and quantitative measurement and estimation. The reader is referred to the

textbooks by Pratt (1991), Gonzalez and Wintz (1987), and Jain (1989) for a

general introduction to image processing techniques.

1.3 HAPPI: An Integrated NDE Image Processing Environment

HAPPI is an integrated image processing software environment

developed in the Electrical and Computer Engineering Department under

sponsorship of the Center for Advanced Technology Development at Iowa State

University. (HAPPI is an acronym for "Here's A Program for Processing

Images".) The author was part of the group which produced HAPPI. Many of

the image processing routines included in HAPPI were developed by the X-ray

Image Processing Group in the Electrical and Computer Engineering

Department at ISU, under sponsorship of the Center for NDE (also at 1SU).

The functions provided in HAPPI include a large repertoire of image

processing, measurement, and analysis routines, image data acquisition and

image data management functions, macro-related functions, and various

operating system access functions. The user interface is based on a graphical

pointing device, in this case a mouse, and a set of graphical windows, or areas

on the host computer's display screen which serve as I/O channels between

the user and the program.

The majority of this thesis deals with HAPPI's design. The finished

package is evaluated with respect to several criteria and in the context of

other commercially available image processing software. The contemporary

image processing software development environment and its influence on

www.manaraa.com

7

how HAPPI was written, as well as future trends in this development

environment, is addressed. Also, the more salient design features of the

software package are discussed, and in this context, a step-by-step procedure

for compiling and linking new functions to HAPPI, with access to the

functions through the HAPPI user interface, is given. The remainder of the

thesis discusses the effects of HAPPI's processing routines on image feature

size.

1.4 Effects of Processing Routines on Feature Size

It is for the designer to determine the size and types of flaws that can be

safely tolerated by his/her design. Depending on a manufactured item's

application and operating environment, a particular flaw may be perfectly

harmless or may invite catastrophe. The designer considers these factors and

his/her knowledge of the materials and components used in his design to

arrive at an educated estimate of what constitutes a significant flaw. It is for

NDE engineers and inspectors to provide measurements of a flaw's properties.

The accuracy of these measurements must be sufficient for a rational course of

action to be taken with respect to a suspected flawed component.

In reviewing the NDE literature, it appears that there is not a standard

set of methods for determining flaw sizes in x-ray radiographs, especially with

digital imaging techniques. (The literature searched included most of the last

decade or so of: NDT International, Journal of NDE, International Advances in

NDT, Review of Progress in QNDE, British Journal of NDT, Soviet Journal of NDT,

Research Techniques in NDT, and Materials Evaluation.) However, some of the

www.manaraa.com

8

literature develops pertinent theory. A number of authors discuss the effects

of various radiographic system parameters on attainable flaw size resolution

and on the theoretical film density profile for certain simple flaw geometries

(Fishman, et al., 1981), (Notea, 1983), (Segal and Trichter, 1988). Also, simple

yet practical methods have been proposed for measuring flaw through¬

thickness dimensions (i.e., the flaw dimension perpendicular to the plane of

the image) (Halmshaw, 1979). The theory and methods are not without their

limitations, and have been developed using assumptions of rather ideal

conditions. It is under the non-ideal image conditions of high noise, low

contrast, and non-uniform background so often encountered in NDE

radiography that image processing techniques are used to try to bring out

information about a suspected flaw.

Where image processing is used to improve an image, the processing

may produce artifacts and/or distort the size of a flaw. In many images, the

flaw information is mixed in with the noise in a way that does not allow

complete separation of the two. Also, many robust signal processing methods

that can produce very impressive results are heavily dependent upon the

accuracy of estimates of signal and noise properties. When the property

estimates are not accurate, results can be worse than those produced by less

robust methods.

In this work, we apply a simple set of size metrics to raw and processed

images of simulated flaws, with the goal of assessing the effects of several of

HAPPI's image processing routines on the measured size of image features.

The metrics used represent reasonable, but not necessarily optimal, ways of

www.manaraa.com

9

measuring flaw size. The effects of noise, flaw shape, and contrast are

included in the study.

www.manaraa.com

CHAPTER 2: CONTEMPORARY IMAGE PROCESSING TRENDS AND

HAPPI’s DESIGN

2.1 Introduction

In this chapter, we put HAPPI in perspective by discussing the

contemporary image processing software development environment in which

it was written, as well as projected future trends in this environment. We

touch on the need for and the state of software standards, and on current and

projected hardware performance. The influence of these factors on how

HAPPI was written is discussed. The general design objectives and top-level

structure and functionality of HAPPI are laid out as foundation for the next

two chapters.

2.2 Contemporary Imaging Trends

HAPPI was written at a time in which the image processing industry

had yet to mature. At this writing, cost-effective commodity solutions to

diverse and demanding industrial image processing problems are few and far

between. In this section, we discuss the current and projected trends in

hardware platforms and software standards that are important to the

maturation of the image processing industry, as well as a sampling of

contemporary image processing software packages.

www.manaraa.com

2.2.1 Hardware Capabilities and Costs

Digital image processing has been made practical by recent gains in

computer hardware performance which have been driven by the advances in

microcircuit integration made in the last couple of decades. At this writing, it

is practical to perform rudimentary image processing operations on personal

computer-based systems costing less than $10,000, and more compute-intensive

image processing operations on graphics workstation-based systems in the

$10,000 to $50,000 range. However, these systems by themselves may not

always be adequate to satisfy the needs of an NDE radiographic inspection

operation. A prerequisite for image processing is image digitization. The

hardware needed to digitize radiographs at the high spatial and intensity

resolutions required for critical applications is still cost-prohibitive for many

potential users at this writing. A rudimentary digitization system, consisting

of an imaging tube-based or charge-coupled-device- (CCD) based video camera,

high-quality lens, camera stand, lightbox (for illuminating radiographs), and

frame grabber (video signal digitizer) may be put together for $10,000 to

$15,000. State-of-the-art image scanning devices with spatial resolution down

to 25 microns and 8-bit intensity resolution currently are sold for $40,000 to

$60,000; systems with 12-bit resolution for more demanding applications are

priced yet higher. Also, increased image resolution means larger volumes of

data to process, which leads to increased speed requirements (and thus

increased cost) for the processing system to keep overall inspection times

reasonable. Consequently, demanding applications still tend to be served by

www.manaraa.com

special-purpose expensive hardware. One NDE radiograph image processing

system receiving much attention at this time is the Scan IV system by DuPont.

This system consists of a high-resolution (35 microns spatial resolution and 3.5

decades light intensity dynamic range) digitizer, a workstation-class computer

augmented by several add-on image processing boards, high-capacity (~2

gigabyte), high-speed optical disk drives, a video signal digitizer for

incorporating real-time video images into the system, 3 image display CRTs,

and a high-resolution digital film recorder for film hardcopy output

(Eizember, 1990). This system is presently sold for hundreds of thousands of

dollars and reportedly requires several person-months of time to set up and

get running. Other radiographic image processing systems have been

developed at Ohio State University, the Army Materials Technology Laboratory,

and the Electric Power Research Institute, among others (Sheppard, 1987). The

high price of such systems keeps their sales volume low, and so high-

performance radiograph image processing is presently not a commodity.

Development of software products for these systems tends to proceed slowly,

with custom work being done for each customer and with software not being

portable between different high-end systems. There seems to be widespread

agreement that the “traditional approach of using custom hardware and

software to address the imaging applications has actually retarded the growth

of new imaging technology by keeping prices high and not addressing the

issue of standards conformity required to spur application development”

(Pfeiffer, 1990, p. 36).

The imaging industry has begun to respond to the difficulties presented

by high-priced custom image processing systems. Pfeiffer (1990) argues that

www.manaraa.com

the increasing availability of image data, the continued improvement in

price-performance ratios of desktop computers, and emergence of software

standards in the form of Application Program Interfaces (APIs), will lead to

high-performance image processing capability being embedded in the

workstations of the future, in much the same way that high-performance

graphics capabilities have been integrated into current workstations. A

tightly integrated “visualization environment” is foreseen wherein the image

processing software development environment is but a part of a larger,

comprehensive environment which includes high-level graphics tools and a

customizable system-user interface. As of the early 90’s several major

workstation vendors had in fact begun to embed image processing capability

in their products (Yencharis, Oct. 1990), although some industry observers felt

that some of these efforts were not yet very well thought out (Mazor, 1990).

Considered particularly significant are the increasing appearance of DCT

(Discrete Cosine Transform, used to compress image data for storage and

transmission) chips in workstations and the widespread use of the Intel i860

RISC processor in new parallel supercomputers (Mazor 1990).

In the recent past and near future, those requiring a relatively modest

image processing capability have and will continue to develop solutions by

integrating hardware from various vendors and patching together application

software from whatever development tools and libraries are provided with the

hardware. Factors such as open computer bus architectures and graphics

standards presently make development of such solutions a relatively easy task

when performance requirements are not particularly demanding. However,

until such time as the workstation “visualization environment” envisioned by

www.manaraa.com

Pfeiffer develops and matures, commodity off-the-shelf systems will not be

available to satisfy many of the diverse and often demanding applications in

NDE image processing.

2.2.2 Software Standards

The image processing market has fallen short of expectations for the

1980’s, according to industry observers (Yencharis Aug. 1990 and Oct. 1990,

Schwarz 1990, and Mazor 1990). A primary reason for this is cited as being the

lack of turnkey solutions (i.e., complete hardware-software systems which

users buy, turn on, and immediately begin using to solve their problems), the

development of which has been hampered by the lack of software standards.

Image processing is seen by some as being not a market per se, but rather a

broad and diverse set of applications within existing markets (Schwarz 1990).

Others who may speak of an actual “market” for image processing

nevertheless also see it as being broad, diverse, and shallow, with many

potential customers needing only one or two processing systems to use as tools

to get their job done. It is not economical for software developers to attempt to

address the needs of such a market without the “enabling technology”

provided by a good set of software standards.

It is traditional for software development to lag hardware development

in all areas of computerized data processing, and the lag has been noted for

some time in the field of image processing (Frei, 1985). This lag is, to some

degree, natural and expected; software developers want to be confident that

there will be significant demand (in the form of an installed base of users of

www.manaraa.com

the target hardware platform) for their product before committing resources

to the product’s development. And in any case, a working prototype of the

target hardware must be available for any appreciable software development

to take place. However, the software lag, when large compared with the rate of

progress in hardware capability, can retard the growth of computer markets.

By the time software products that fully exploit the capabilities of a given

generation of hardware are on the market, the next generation of hardware is

out, and the prospective buyer of a system must choose between a hardware

platform that is already becoming obsolete but for which there is useful

software available, and a state-of-the-art hardware platform which will

probably not have useful software available until it, too, is becoming obsolete.

Under these circumstances, many potential buyers may simply decide not to

buy anything. Some industry observers believe that the image processing

software development lag is steadily getting worse (Mazor 1990), and that this

is keeping customers away. Software standards are an important way of

dealing with the negative effects of the software development lag. By hiding

the hardware-specific details from the software developer, these standards

make it possible for the developer to write software that runs on multiple

hardware platforms and/or more than one generation of a given hardware

platform, and to do so in less time than would be required without standards.

The software developer’s costs are greatly reduced and potential earnings

increased, and thus his/her risk is lowered.

Serious attempts at developing image processing software standards

have appeared only since the late 1980’s. One notable early effort is the

Imaging Kernel System, or IKS, developed at the University of Lowell. IKS was

www.manaraa.com

designed as a device-independent application program interface (API) which

would allow programmers to, without detailed knowledge of the target

hardware architecture, develop image processing applications programs that

were portable to any hardware platform supporting the standard and that

would automatically take full advantage of any special image processing

capabilities of each hardware platform. Features of IKS included object-

oriented design, use of virtual devices and virtual device tables for translating

application requests from the API level down to the appropriate hardware,

data abstraction of various data items and structures used in image processing,

and a client-server design model in which client programs (i.e., application

programs) requested processing services of the IKS server through the API.

While IKS itself was not adopted as an industry-wide standard, its developers

went on to sit on the American National Standards Institute (ANSI) committee

X3H3.8, which, along with the International Standards Organization (ISO)

committee SC24, began working to develop an ANSI standard image processing

API known as the Programmer’s Imaging Kernel, or PIK (Pfeiffer 1990).

Another API, under development at a company called VITec, is known as

“Programmer’s Image Computing Environment Software (PICES). PICES

developers also sat on the ANSI committee developing PIK, and as of late 1990

claimed that the then currently available version of PICES would conform to

the PIK standard when it is finalized (Pfeiffer 1990). PICES has many features

in common with IKS, such as memory management, support lor user-defined

algorithms and data types, and virtual I/O device interfaces; its developers also

claim that its design will facilitate interoperability with other APIs (e.g.,

www.manaraa.com

graphics APIs such as PHIGS and GKS), leading to the tightly integrated

“visualization environment” foreseen by Pfeiffer.

The formation of the ANSI committee to develop PIK represents

widespread recognition of the need for an industry standard image processing

API. The situation with PIK in early 1991 was as follows: Most of the major

workstation vendors and many of the major vendors of special-purpose image

processing hardware subsystems are represented on the committee. The stated

goals of the PIK committee are much the same as those of other, previous

image processing API developers: software portability and extensibility,

hardware platform independence, compatibility with other standard APIs,

window systems, and image file formats, and provision of data management

utilities. While PIK does not address system performance issues, not excluding

real-time applications is also a stated goal (Stephenson 1990). PIK contains a

large and diverse library of image processing algorithms and utilities, which

reflects the broad, shallow nature of the image processing market and the

broad-based makeup of the ANSI PIK committee. Most image processing

applications developers will likely deal with only a small portion of this

library. The reader is referred to the article by Stephenson (1990) for a

summary of PIK operators, but is cautioned that the only final word on PIK

will be the ANSI standard itself. Several issues are yet to be resolved with PIK,

and others will attend the finalized version. There is not yet agreement on the

implementations of all image processing algorithms in the standard’s library.

The internal (i.e., machine) representation format of image pixel data types is

not specified by the standard; neither are storage formats or conventions for

image data memory management specified. These issues will affect efforts to

www.manaraa.com

verify a PIK implementation’s conformance to the standard, and, since

verifiability of a standard is an important requisite for its acceptance, could

slow its acceptance. Also, PIK does not address performance issues; this

encourages the migration of the standard to the largest number of

“price/performance points”, from low-cost personal computers to expensive

supercomputers. However, coupled with other non-specified system

characteristics such as memory management conventions, the lack of

performance specifications could hold pitfalls for applications developers

(Stephenson 1990). In any case, the PIK standard will more than likely have a

positive impact on image processing application development, spurring

growth in the image processing industry as a whole.

In early 1991, an official ISO project, titled Image Processing and

Interchange (ISO/IEC Project 1.24.10), was begun to develop an international

standard integrating an image processing API as well as an image interchange

facility (Clark 1992). Previous work on PIK is to form the basis for the API,

which is now called PIKS (for Programmer’s Imaging Kernel System). It is

intended that the image processing API (i.e., PIKS) and the image interchange

facility (IIF) will work independently of each other, although there will be an

interface between the two. To address the problems presented by the broad,

shallow nature of image processing markets, there will be a number of

conformance levels for both PIKS and the IIF. Less demanding applications

will only need to meet lower conformance levels of the standard. The PIKS

standard is currently planned to specify about 200 image processing operators

in the following categories: image analysis, classification, color processing,

detection and registration, edge, line and spot detection, enhancement,

www.manaraa.com

1 9

filtering, geometric, morphological, point operations, restoration,

segmentation, shape, unitary transformation, and 3-D specific operators.

Details about PIKS have not yet been made available to the general public; the

schedule for the standard places its completion date in early 1994 (Clark, 1992).

Another standard still under development and receiving much attention

is the JPEG compression standard (this standard is more a specification of a set

of algorithms than of a software interface, but is nevertheless important to the

image processing industry). The acronym JPEG stands for the Joint

Photographic Experts Group, a collaborative effort between the CCITT

(International Telegraph and Telephone Consultative Committee), and ISO

(International Standards Organization). JPEG’s purpose is to develop a robust

standard for compression of virtually any type of continuous-tone digital

source image; the draft standard compression method is based on the Discrete

Cosine Transform, or DCT (Wallace 1991). The JPEG compression standard is

seen as another extremely important enabling technology for image

processing applications. Though image capture and display devices suitable

for a multitude of applications are now quite affordable, many of these

applications are still not yet viable due the enormous amounts of data required

to represent digital images and the attendant storage and transmission costs.

JPEG’s stated goals arc as follows: 1) To achieve state-of-the-art or nearly state-

of-the-art compression rates for a wide range of image quality ratings, while

allowing the application or user to set the desired compression/image quality

tradeoff, 2) to be applicable to virtually all continuous-tone digital source

images, 3) to have tractable computational complexity, allowing software

implementation with good performance on general-purpose CPUs as well as

www.manaraa.com

20

low-cost hardware implementations, and 4) to have sequential, progressive,

lossless, and hierarchical encoding modes of operation (the reader is referred

to the article by Wallace for details on these modes). It is predicted that if

JPEG’s goals are substantially met, many image processing applications will

flourish, widespread exchange of image databases between different

application areas will take place, and performance-sensitive applications

inhibited by high storage and transmission costs will be served by high-

volume, low-cost VLSI implementations.

2.2.3 Other Contemporary Image Processing Packages

Many types of image processing software products are currently

available, and we may only expect more to appear. These products range from

simple algorithm libraries to complete, end-user application programs, such as

HAPPI. In this section, we briefly discuss a few image processing software

packages which are contemporaries of HAPPI. The intent here is to look at a

sampling of the different types of available products; a comprehensive

analysis of the image processing software market is beyond the scope of this

document.

At one end of the spectrum of image processing products is Paragon

IL/F, from Paragon Imaging. The IL/F product is simply a FORTRAN

subroutine library of image processing algorithms. The IL/F library is large

and robust, with functions ranging from simple image data management

utilities, arithmetic (add, subtract, multiply, divide) operations on images, and

statistical analyses of images, to more advanced image restoration algorithms

www.manaraa.com

such as Wiener filtering. Use of Paragon IL/F requires programming; IL/F is

not meant as an application. The IL/F user is responsible for specifying the

desired behavior of his/her image processing application, and for

implementing it through the subroutine library. This product is somewhat

primitive, as it only offers algorithms for processing functionality; it does not

provide user-interface building tools. The choice of FORTRAN for the library

is a handicap for development of applications with graphical user interfaces

(GUIs); most modern GUIs are written in a more powerful language, such as C,

and difficulties would likely be encountered in interfacing a GUI with this

particular processing software.

A much more sophisticated application development software product,

also from Paragon, is known as Visualization Workbench. This product not

only provides an extensive algorithm library like that found in IL/F, but in

addition has facilities for creating combinations of graphical and command

line-based user interfaces. Most importantly, the application programmer can

develop an application without writing actual source code; Visualization

Workbench provides a “visual programming” feature, wherein the

application developer creates a prototype by manipulating graphical icons on

the computer display. Visualization Workbench is designed to run on the host

processor of a workstation-class computer, and thus does not support any

special-purpose accelerator boards. However, its algorithm library is claimed

to support the PIK draft standard, which means that it should automatically

take advantage of any PIK-compliant accelerators once the standard is

finalized and such products begin to appear.

www.manaraa.com

22

Another application development environment with slightly different

features is Environment36, from Gems of Cambridge. Unlike Visualization

Workbench, Environment36 supports an optional hardware accelerator card,

also manufactured by Gems. Environment36 consists of this hardware

accelerator and an application development software package called

Gemsoft36. Gemsoft36 contains both an algorithm library (which appears to

be less robust than Paragon’s) and programmer’s toolkit for building a

graphical user interface. In this respect, prototyping with Gemsoft36 is most

certainly easier than with Paragon IL/F, though not likely to be as effortless

as with Visualization Workbench. Like Visualization Workbench, Gemsoft36

runs on a workstation-class host computer.

Representative of personal computer-based image processing is Image-

Pro from Media Cybernetics. Originally available only for PCs, this end-user

application package has also been implemented on workstation-class

computers. As all but the most rudimentary point transformations are often

unwieldy to perform on a PC’s host processor, a number of image processing

accelerator boards are available for PCs; Image-Pro supports several of these

boards. Many relatively primitive image analysis functions are available in

Image-Pro (e.g., histograms); the few processing functions are also fairly

elementary, consisting mostly of convolution-based and lookup table (LUT)

transformations. A separate Image-Pro module which performs Fourier

frequency-domain processing can be purchased, but, in this author’s opinion,

the base package is of such limited use that it would greatly benefit from

having the Fourier module integrated into it. The consensus of Image-Pro

users, including both those quoted in trade journals and users at Iowa State’s

www.manaraa.com

23

Center for NDE, is that while it may be useful as an exploratory tool for

newcomers to image processing, Image-Pro’s utility is severely limited for

more experienced practitioners with more demanding applications (Mazor

1990).

Several image processing packages have been developed at U.S.

universities and research laboratories; many have been placed in the public

domain and are thus available free of charge. One such package is called View,

and is co-funded by the Lawrence Livermore National Laboratory, the

Strategic Defense Initiative Organization, and the Rome Air Development

Center. View is written to run on workstation-class computers with a window-

based user interface. Unlike the Paragon and Gems products, View is an end-

user application. The extent and diversity of its image processing capability is

much greater than that of Image-Pro, but somewhat less than that of the

Paragon products. Distinguishing features of View are that it supports three-

dimensional data set processing and visualization, has a basic image simulation

capability, and includes some traditional filters not found in other packages

(e.g., Bessel and Butterworth filters). View is maintained as an ongoing

project by the Lawrence Livermore National Laboratory.

The Scan IV system from DuPont, mentioned earlier in the chapter,

represents the other end of the spectrum from simple algorithm libraries. It

consists of special-purpose hardware plus end-user application software

written specifically for that hardware; it is truly a bundled, turnkey system

for NDE radiography. Its distinguishing features are its very high-resolution

scanner, large image storage capacity, and film hardcopy capability.

Literature for the product indicates that the system’s software is not as state-

www.manaraa.com

of-the-art as its hardware, and that because of the relatively low volume of

sales, custom software work is often done for individual customers. However,

the product literature also indicates that more specific applications software

(e.g., image processing for weld flaw classification) is planned.

As may be seen from the above examples, many types of image

processing software, ranging from toolkits to hardware-specific application

programs are available to meet different needs. This is a reflection of the

nature of the image processing market. It is hoped that the above discussion

has given the reader a feel for this market that will provide some perspective

for assessing HAPPI. In the next section, we discuss the design objectives,

program features, and the top-level structure and functionality of HAPPI.

2.3 HAPPI Design Objectives and Program Features

HAPPI’s design objectives were based on perceived user needs gathered

through interaction with the industrial sponsors of the Center for NDE at ISU.

These sponsors indicated that they would like to have an integrated hardware-

software system capable of both capturing and processing digital images of

radiographs, with a large repertoire of image processing algorithms accessed

through a friendly, intuitive graphical user interface. The most likely user of

the system was to be a radiographic technician responsible for inspecting

parts; other possible users included NDE engineers responsible for developing

inspection methods for new products. Also, HAPPI was intended to be a

prototype for a commercial package to be developed by an industrial partner

www.manaraa.com

25

of the Center for Advanced Technology Development. The design objectives of

HAPPI as enumerated at the beginning of the project are listed below:

1) To provide an easy-to-use interface between the NDE radiographer

and image processing software particularly useful for NDE.

2) To allow the user to produce useful results (i.e., detected flaws)

without requiring him/her to embark on a long, detailed study of image

processing theory.

3) To provide the user with a wide range of utilities such as image file

format conversions, audit trails of image processing steps, and macro building

(where a "macro" in this sense is a specific series of image processing steps

performed in sequence on an image or set of images).

4) To provide an interface for users who wish to add their own

processing algorithms to the package.

5) To make the software as device-independent as possible.

6) To make modification and enhancement of the package by

programmers other than the original authors straightforward.

HAPPI features a graphical user interface based on the X Window

network-based graphical window system developed at MIT. The user interface

consists of a graphical hierarchical menu structure through which all

program functions are accessed using the mouse. A “Main Menu” window and

an “Information” window are displayed at all times while HAPPI is running.

Other types of windows appear only when the functions they serve are

activated by the user through the Main Menu window. These other windows

www.manaraa.com

26

include submenus activated by making a main menu selection, a “Value”

window through which the user enters parameters for processing routines, an

“Acknowledge” window in which the user is advised of unusual or dangerous

situations (e.g., the user attempting to delete a newly created image which has

not yet been saved to disk), image windows in which images are displayed, a

system window which gives the user access to an operating system shell, and

graphics windows in which image histograms and one-dimensional image

slice data are displayed. HAPPI’s main menu selections arc: “Image

Processing”, which contains all of HAPPI’s image processing functions;

“Acquisition”, which contains image acquisition functions; “Images”, which

contains functions for loading and saving images from and to disk storage;

“Macros”, which contains macro processing functions (to be explained below);

“Special Functions”, which contains functions to access operating system

services, including an operating system shell; “Buffer”, which displays a list

of all images currently in memory and their display status (i.e., displayed vs.

hidden); and “Quit”, which exits the user from the program. For further

details on HAPPI’s menu hierarchy, the reader is referred to the HAPPI

documentation listed in the bibliography.

An important feature of HAPPI is its built-in macro language. This

feature allows the execution of package functions normally accessed through

the menu structure to be performed with no user interaction between the

beginning and end of the sequence of macro instructions. The macro

language contains all common features found in other high-level languages,

such as variable declarations, conditional and looping constructs, and user-

defined subroutines.

www.manaraa.com

27

It was assumed that the targeted user of HAPPI (i.e., the NDE

radiographer) is not an experienced programmer, and also that he/she is not

familiar with image processing theory or techniques. Default input

parameters for each processing routine are provided to enable a new user to

get a feel for the results produced by a particular algorithm without being

concerned with how the results were obtained. Also, when a user alters the

default input parameters, the values used are preserved and become the new

default parameters for remainder of the processing session. It was also

assumed that the user may need to do both routine inspection of parts from a

production line as well as occasional inspection of a part in the prototype

stage. The menu-based interface thus accommodates interactive processing

for exploratory prototype inspection while the macro language facilitates

batch processing of multiple production line radiographs once a processing

scheme has been optimized for a particular part.

To make HAPPI as portable as possible, it was necessary to adhere to all

existing software standards. However, at the time of HAPPI’s design, the image

processing APIs discussed in the previous section were cither not widely

adopted or not complete. In essence, there were no image processing software

standards upon which HAPPI could be built; each hardware vendor had a

unique, nonstandard interface. Consequently, it was not possible for HAPPI to

make use of any high-performance computer architectures for image

processing while remaining highly portable. It was thus decided that HAPPI

would be implemented on a graphics workstation-class computer typical of

those used for a wide range of engineering tasks. The operating system of

www.manaraa.com

28

choice for these computers is UNIX*, and the graphics standard used on these

machines is X Windows (or simply “X”)- The most widely used and documented

programmer’s interface to X is through the C programming language. At the

beginning of the project which produced HAPPI, X was the de facto industry

standard; X has since gained universal acceptance. The C programming

language is a natural choice for applications running under UNIX, as the UNIX

operating system itself is written in C. The language is relatively small, which

allows the programmer to regularly use most of its features and makes

applications extremely portable; C also gives the programmer access to

powerful low-level hardware functions.

The X Window system was developed at MIT in cooperation with a

consortium of corporate sponsors. It provides high-performance, device¬

independent, network transparent graphics, and features a client-server

programming model. In this model, application programs act as “clients”

which request the network services of an X server. The X server is a program

running on a user’s display which controls that display’s hardware and

provides I/O services to applications, and which maintains its own local data

structures to minimize network traffic between it and its clients. The fact that

clients may request X services across a network means that compute-intensive

applications may run on a powerful central host computer while displaying

sophisticated graphical output on one or several low-cost X display stations. On

invocation, X applications must request and make a connection with an X

server and initialize any data structures to be maintained by the server. The

foundation layer of X is the X network protocol; this is the mechanism by

*UNIX is a trademark of AT&T.

www.manaraa.com

29

which servers and clients communicate. The application programmer’s lowest

level interface to X is a set of C language function calls, built on top of the

protocol, and referred to as Xlib. The authors of X intended that most

applications be written using a higher-level programming interface, called a

toolkit, than Xlib. However, at the time the HAPPI project began, no standard

toolkit had emerged (O’Reilly 1989 and Nye 1990, p.10), and so application

programmers could not be certain of writing extremely portable code using

any of the toolkits available at that time. For this reason, a sort of “custom

toolkit” was written for HAPPI using Xlib; this set of routines was used

extensively throughout HAPPI to create and destroy windows and exchange

information between the program and the user. Several of the routines are

discussed in Chapter 4 on extending HAPPI; additional information is available

from the HAPPI documentation in the bibliography. The reader is referred to,

as an example, the text by Scheifler et al. (1988) for further information on X.

www.manaraa.com

30

CHAPTER 3: EVALUATION OF HAPPI

3.1 Introduction

As with most projects with a finite time budget, HAPPI is not everything

that it could be. The program was written not by experienced software

designers but by students, and of necessity, much on-the-job learning took

place during the course of the project. In this chapter, we evaluate HAPPI's

strengths and weaknesses, with the hope that the experience gained will

influence both the maintenance and extension of the X-ray Image Processing

Group's local version of HAPPI and the future design of other image

processing software by the group.

3.2 Strengths of HAPPI

HAPPI's strengths arc the robustness of its library of processing

routines, the ease of use of its user interface, and its portability, extensibility,

and programmability. This is not to say that HAPPI is perfect in all of these

areas, but rather that it addresses them well. We will see in the next section

where HAPPI could be improved in these and other areas.

HAPPI's repertoire of image processing routines consists both of

common, well-known techniques, as well as more specialized techniques

which have been developed over the past few years in the X-ray Image

Processing Group. The more common techniques are found in many

commercial image processing software packages, and thus constitute a

www.manaraa.com

minimum amount of functionality that HAPPI needs in order be competitive

with such software packages. Most of these common techniques have been

implemented in HAPPI. (The gaps in HAPPI's repertoire of basic processing

routines are discussed in the next section.) The more specialized techniques

developed by the X-ray Image Processing Group, such as the routines found

under the "Flaw Detection" menu, round out HAPPI's processing capability and

distinguish it from other, more generic image processing packages. These

routines were developed using NDE images as test data, and are, to varying

extents, better "tuned" to certain NDE applications than the more common

routines. On occasions when HAPPI has been presented to the industrial

sponsors of the Center for NDE at 1SU, NDE practitioners have indicated that

HAPPI's library of processing routines is quite robust compared with that of

other commercially available software. One consequence of this is that HAPPI

may often provide many more processing functions than are needed for a

particular NDE application.

HAPPI's menu-driven, graphical user interface has proven to be easy

for first-time users to experiment with. During the last phase of the project, a

complete demonstration system, including a workstation, frame grabber, light

box, and camera, was taken to the NDE lab of one of the Center for NDE's

industrial sponsors. Personnel at the sponsor's site were able to load, process,

and store images with minimal help from the developers of HAPPI and without

reading a manual. The routines which fetch user input for HAPPI's

processing routines guide the user’s choice of input parameters, indicating

and enforcing any parameter constraints, and proposing default values that

meet these constraints. Default parameter values for processing routines with

www.manaraa.com

similar input parameters are shared between such processing routines. Also,

the last value entered by the user for any given parameter is preserved and

used as the default parameter value at the next invocation of any function

which uses that parameter. These features help the user to easily experiment

with the effects of each processing routine on images without burdening

him/her with the responsibility of remembering parameter constraints and

previously used parameter values.

HAPPI's portability has been demonstrated by successful ports (with

minor modifications) to computers other than the Stellar GS1025 on which it

was developed. The program is based on standards that were stable at the time

it was written: C, UNIX, and the Xlib interface to X Windows. HAPPI is thus, in

theory, portable to any system that adheres to these standards. The C language

is itself inherently portable by virtue of the "smallness" of the language; it is

relatively easy to write portable programs in C by following a few simple

conventions (Kelley and Pohl, 1984, p.2). UNIX is the operating system of

choice on the workstation-class computers for which HAPPI was designed. As

HAPPI’s graphics routines were written using the Xlib low-level interface to X

Windows, HAPPI does not require the support of any particular X toolkit to port

to a particular workstation.

The code structure underlying HAPPI's image processing functionality

is fairly regular and repetitive. This makes HAPPI readily extensible by C

programmers. In Chapter 4, we give a procedure for adding new image

processing routines to HAPPI, discussing in detail the code structure and tools

available to the programmer modifying HAPPI. A central piece of code

examined in Chapter 4 is the Image Processing Manager. The Image

www.manaraa.com

Processing Manager enhances HAPPI's extensibility and maintainability by

providing a versatile interface to HAPPI’s image processing routines that

accommodates both menu-driven and macro-driven access to the processing

routines.

HAPPI's built-in macro language provides programmability to the

HAPPI user. The macro language can execute most of HAPPI's image

processing and image I/O functions, and also implements many features

common to general-purpose computer programming languages, such as

variable declarations, looping and decision constructs, and procedure

definitions. HAPPI's "convert history to macro" feature allows the user to

create a macro from the processing history of an image without typing a

single line of macro language code. The macro language is useful for doing

repetitive processing of many similar images. It may also be used in an

exploratory processing situation to determine the most useful processing

routines and input parameters to use on a particular image or class of images.

3.3 Areas for Further Improvement to HAPPI

There are many ways in which HAPPI could be improved. Some of the

possible improvements involve adding desirable features that were identified

later in the project but were not implemented for lack of time. Others involve

more extensive changes to the underlying structure of the program. For

purposes of discussion, the proposed improvements to HAPPI in this section

are grouped into user interface enhancements, overall program behavior

www.manaraa.com

34

enhancements, additional functionality, and enhancements to performance

and code maintainability.

3.3.1 User Interface Enhancements

Perhaps the most useful improvement to HAPPI's user interface would

be the addition of a command-line interface concurrent with the existing

menu-based graphical user interface. With such an interface, the user would

be able to access any of HAPPI's functions by typing alphanumeric text in a

command entry window and possibly by using programmable function keys.

Experience has shown that software users tend to favor mousc-and-menu-

based interfaces when first learning how to use a new program, as the menus

guide their choice of input. However, as a user becomes more experienced

with a program, and begins to memorize the various commands and command

parameters and options, a command-line interface becomes more desirable, as

it generally facilitates faster user interaction and results in less screen clutter

than a mouse-and-menu-based interface; this is especially evident when there

are many nesting levels in the menu hierarchy. HAPPI's built-in macro

language is the most logical starting point for implementing a command-line

interface; the language already provides access to HAPPI's most-used and most

important functions. The degree of difficulty of adapting the macro language

to a command-line interface would depend on how much of the macro

language is implemented in the command language. Making the macro

language's programming constructs available from the command window

would require more effort than simply making the image I/O and processing

www.manaraa.com

calls available. It should be noted that a large part of the task of implementing

a command-line interface for HAPPI lies in parsing, analyzing, and

interpreting the command line; much of this has been taken care of in

implementing the macro language.

A possible extension to a command-line interface to HAPPI would be the

execution of HAPPI commands and/or macros directly from the operating

system prompt. This would involve invoking HAPPI without creating or

displaying any windows, loading the remainder of HAPPI's (non-windowing)

code and executing the command and/or macro, then returning to the

operating system. Such an extension to HAPPI's interface would be useful for

users who, after experimenting with different processing techniques, have

identified and standardized particular methods that they use frequently. These

users may wish to implement their standard processing methods on a large

number of images without being obliged to clutter their computer screens

with HAPPI's graphical interface at a time when they are not using that

interface. Such an extension to HAPPI would also provide processing

capability to users who do not have X Windows display capability at their

particular terminals.

When a processing routine is executed in the present version of HAPPI,

the user must always first select the processing routine to be executed, and

then select the input image(s) for the routine. An alternative mode of

operation would be to allow the user to designate an image as the "currently

selected image", and have all processing routines selected by the user

automatically operate on the currently selected image. This mode of operation

would save the user unnecessary mouse motion and button clicks when he/she

www.manaraa.com

is experimenting with the effects of different processing routines on the same

image. Providing this alternative mode of operation would not be difficult

given the present state of HAPPI's structure. There would, however, need to be

a method of indicating graphically which image on the screen is the

"currently selected image". A further step would be a "multiple image select"

mode, wherein several images could be selected and a common processing

routine automatically applied to all of them, using the same processing

parameters for each of them.

Another enhancement to HAPPI's user interface which would help

reduce unnecessary mouse motion and button clicks involves placing "active"

or "smart" borders around HAPPI's image and graphics windows. In the

present version of HAPPI, the user must select a menu item to delete or hide an

image or graphics window, and must re-select the same menu item for every

window on which he/she wishes to perform the action. After selecting the

menu item, the user must then select the window on which to perform the

action, resulting in two clicks per window per operation. A more efficient way

to remove or hide image and graphics windows would be to place graphical

borders around these windows, with graphical "buttons" for deleting and

hiding the window. The user could then delete an image from the screen and

the computer's memory with a single mouse button click on the appropriate

spot on the image window border.

Finally, the method of entering mask values for large user-defined

convolution masks needs to be streamlined. The current version of HAPPI

requires the user to manipulate a graphical "value window" to enter every

single mask value. This can be very slow and time-consuming for large masks.

www.manaraa.com

A better method would be to allow the user to type in all mask values directly

from the keyboard.

3.3.2 Program Behavior Enhancements

A very significant enhancement to HAPPI’s overall behavior would be

the addition of some sort of multitasking capability. In the present version of

HAPPI, the user may not access any of the program's functions while an image

processing routine is running. Depending on the speed of the host computer

system on which HAPPI is running, the size of the image being processed, the

parameters passed to a processing routine, and other factors, the execution

time of a processing routine can be anywhere from a few seconds to several

minutes or tens of minutes. The longer processing times can detract from the

advantages the user gains from the interactive processing environment

provided by HAPPI. A multitasking version of HAPPI would allow the user to

execute more than one of HAPPI's functions at once, allowing the user to be,

on the average, more productive. The allowed number of concurrently

running tasks in a multitasking version of HAPPI is a design parameter that

would need to be studied. With each additional concurrent task, some

computational overhead is incurred, and at some point the overhead would

begin to offset the benefits of multitasking.

One way of implementing a multitasking version of HAPPI is to create a

separate UNIX process for every HAPPI function whenever that function is

invoked and perform interprocess communication between the function and

the main program via pipes. Pipes are first-in-first-out (FIFO) data structures

www.manaraa.com

which serve as I/O channels for interprocess communication. Such an

architectural modification to HAPPI would be a significant undertaking. Other

methods of interprocess communication that could be considered in building a

multitasking version of HAPPI include messages, semaphores, shared memory,

and remote procedure calls (RPC's) (Stellar Computer Inc., 1988b, p.15-1).

These are all implemented through UNIX system calls; the C language itself has

no multiprogramming features (Kernighan and Ritchie, 1986, p.2).

Another possible enhancement to H APPI's overall behavior is the

ability to read "startup files", which would allow individual users to customize

the program's behavior to their preferences. In the present version of HAPPI,

this is not an important issue, as the number of items which could be

customized is small. Future versions of HAPPI with more overall system

behavior options would benefit more from such an enhancement.

3.3.3 Additional Functionality

A number of functions could be added to HAPPI which would increase its

utility. Some of these arc commonly found in commercial software; other less

common functions were inspired by experience with HAPPI itself. We discuss

here several of these functions, while recognizing that the list is not

exhaustive; most people who use any particular piece of software for a long

time can think of endless enhancements they would like to see.

HAPPI could benefit from the addition of more data visualization tools.

Many scientific software packages provide extensive plotting and graphing

capabilities, such as contour plots, 3-d hidden line plots, and others. Addition

www.manaraa.com

of these capabilities to HAPPI would enhance its image analysis power, since

the "best" data display method depends both on the specific application and on

the tastes of the user.

HAPPI lacks, and should have, full support for real and complex-valued

images. HAPPI can currently represent such images internally, but does not

allow the user to manipulate them. As a consequence, the inverse Fast Fourier

Transform (FFT) is not accessible to the user. (The forward transform is

accessible, but currently only provides the magnitude of the complex-valued

frequency-domain image, and scales the floating-point magnitude values to

the 0-255 grey scale range.) This is an oversight, as the inverse FFT is an

essential function, and full support for operations on real and complex-valued

images should have been planned for earlier in the project. A large group of

image data manipulation routines embedded in HAPPI's source code, known as

the "image operation routines”, or "iops", supports user functions which

manipulate grey scale and binary images. Writing a corresponding set of

support routines for real and complex-valued images would facilitate the

addition of user functions to manipulate these images as well. No changes to

HAPPI's overall architecture would be needed; the new support routines would

simply be grouped with, and accessed in the same way as, the existing ones.

Methods and policies for displaying the inherently 4-dimcnsional data of a

complex-valued image on a 2-dimensional, 8-bit computer display would need

to be developed, and would have to address both the higher dimensionality and

the large dynamic range (compared with grey scale images) of complex¬

valued images. Another, related capability commonly found in commercial

image processing software that is missing from HAPPI is user-definable

www.manaraa.com

40

frequency-domain filtering. Full support for complex-valued images and the

inverse FFT would set the stage for implementing such a frequency-domain

filtering capability as well.

Support for additional image data structures may be advantageous for

future versions of HAPPI. The program was originally intended for use on X-

ray NDE images. Future versions may include features for processing images

formed with other NDE inspection techniques, including thermographic,

electromagnetic, and ultrasonic methods. One can envision combining these

images into a composite image that could yield much more information about a

part under test than could any of the images formed with the individual

inspection techniques. Routines for manipulating such a composite image

data structure, similar to those which handle binary and grey scale images,

would need to be written to support processing of the composite images.

Another variation on this idea is to provide support for processing and

manipulation of 1-d arrays as data objects similar to images. Many of HAPPI's

image processing routines could be used to advantage on 1-d data sets from,

say, ultrasonic scans. Each of these routines would need to be examined and

modified if necessary to adapt to 1-d inputs. New display routines would need

to be written to display 1-d arrays as graphs rather than as light intensities.

HAPPI would benefit from having its own hardcopy capability. Images

created in HAPPI can be printed by first saving them to disk in PostScript

format and printing them from the UNIX operating system using a PostScript

printer. (PostScript is a page description language, or PDL, and is a device¬

independent standard supported on a large number of laser printers. PDL's

such as PostScript can be used to produce very high-quality hardcopy.)

www.manaraa.com

However, this obviously requires more steps than would be needed if the

system calls necessary to print directly from HAPPI were built in to the

program. Also, images and macro files are the only data objects created by

HAPPI that can currently be saved to disk and printed from the operating

system. It would be more desirable to allow the user to print any of HAPPI's

data objects, including images, image history data, image statistics data, image

display lookup tables, graphs, and even the entire screen, directly from

HAPPI.

Other I/O functions that would benefit HAPPI include the ability to read

and write any of HAPPI's above-mentioned data objects to and from disk, and

the ability to do so in different file formats (e.g., native HAPPI formats,

PostScript format, and other image formats from various hardware and

software vendors). These capabilities would allow printing of saved HAPPI

data objects from outside the program when only a printout is needed, and

would allow HAPPI data objects to be read into other application software, such

as desktop publishing packages, for purposes of report generation.

Once the user of HAPPI has identified a flaw or suspected flaw in an

image, he/she may wish to annotate the image with a graphical indicator of

the flaw's location and perhaps with explanatory text. HAPPI currently lacks,

and would benefit from having, this capability. One issue to be addressed in

implementing graphical and textual annotation is how to keep the annotation

information with the image data without overwriting any image data. If the

annotation information is stored in a separate file from the image, it is

possible for either the image or the annotation file to become "orphaned" if

the other file is deleted, moved, or renamed. On the other hand, the annotation

www.manaraa.com

data should not be simply written over pixel intensity data in the image file, as

the overwritten data may be needed later. One possible solution is to make the

annotation information part of the image data structure, keeping it separate

from the pixel data but saving it in the same file as the image. This solution

would involve revising HAPPI's image load and save routines and any image

file format conversion routines to handle the revised image file format.

Some of HAPPI's routines, such as the white noise generator currently

found under the "Noise Filters" menu, are meant for experimentation by the

user and not for filtering the user's image data to make it somehow more

desirable. These routines allow the user to add known degradations to images,

and experiment with the effects of these degradations on subsequent

processing steps. A useful extension to this capability would be the addition of

a more comprehensive set of flaw simulation functions. This set could include

routines for generating images of voids and cracks, adding noise with user-

specified probability distributions, convolving simulated images with transfer

functions characteristic of various imaging systems, adding a slowly varying

intensity "trend" to simulated images, and composing a test image from

extracted portions of other images (real or simulated).

A new trend in user interfaces for signal processing, VLSI design,

Computer Aided Software Engineering (CASE), and many other types of

engineering software is the ability to do "visual programming." With these

software packages, the user programs a complicated process by

interconnecting graphical objects representing the various operations that

make up the process. Each object may have several inputs and outputs, as well

as feedback, depending on the application. Examples of software with such

www.manaraa.com

capabilities are the Visualization Workbench product from Paragon Imaging

(Paragon Imaging, Inc.)* and the development system software for a video

signal processor marketed by Silicon & Software Systems (Blagden and

Scanlan, 1990). HAPPI's macro language could gain a new level of user

friendliness if it were implemented with a visual programming interface.

Adding this capability would be a significant undertaking; while major

architectural modifications to HAPPI would probably not be necessary, the

additional functions needed to draw the graphical symbols and translate

graphical information to actual sequences of macro instructions would

require careful design and many lines of code.

While HAPPI makes a large number of functions available to the user, it

seems that there are always more that would be nice to have. A number of

miscellaneous tools and functions proposed for addition to HAPPI near or since

the end of the project's funding are briefly discussed in the following

paragraphs.

A useful function that could be readily implemented in HAPPI is the "in-

place" processing of a rcgion-of-intcrcst (ROD in an image, with the output

data being overlaid at its original location within the image from which it was

extracted. This would allow the user to reduce processing time by processing a

smaller data set while retaining the visual context of the processed data for

image interpretation.

HAPPI presently is capable of generating colormaps, or image display

look-up tables (mappings of an image's numerical pixel values to light

intensities on the computer display) which have a single linear segment. This

www.manaraa.com

44

capability could be extended to allow piecewise linear colormaps with multiple

linear segments.

One of HAPPI's particularly useful analysis tools is the "Pixel Analyzer",

which, as the user moves the mouse cursor within an image, dynamically

displays a magnified region of the image and the coordinates and numerical

value of the pixel to which the mouse cursor points. This tool could be

enhanced by calibrating its readout in terms of engineering units, such as

centimeters in place of pixel coordinates, and optical density in place of

numerical pixel value.

Another of HAPPI's analysis tools is the "real-time slice.” To use this

tool, the user drags a "slice cursor" (a vertical or horizontal line) across an

image with the mouse, and the row or column of the image currently under

the slice cursor is dynamically displayed in a separate "slice window" as a

graph of grey level vs. position along the row or column. As the user moves

the slice cursor across an image, the row or column of the image graphed in

the slice window is continuously updated. The real-time slice capability could

be further enhanced by allowing the user to take a real-time "slice" of the

image at any arbitrary angle. This would help the user in analyzing long

crack-like image features oriented at any angle.

3.3.4 Performance and Code Maintainability Enhancements

As mentioned in Subsection 3.3.2, some of HAPPI's image processing

routines can take tens of minutes to complete, and given HAPPI's current

inability to do multitasking, the user cannot do any useful work with HAPPI

www.manaraa.com

while a processing routine is executing. Thus, a user who often needs to

perform the more time-consuming processing tasks will find processing with

HAPPI to be an inefficient use of his/her time. Part of the solution to this

problem is, as previously discussed, to provide a multitasking capability within

HAPPI. The other part of the solution is to make HAPPI run as fast as possible.

In this section, we discuss issues related to increasing HAPPI's processing

speed.

The Stellar GS1025 graphics supercomputer on which HAPPI was

developed contains a multistream processor with a synchronous pipeline

multi-processor architecture, which can concurrently execute up to four

instruction "streams", and also contains four identical vector/floating-point

processor units which can work independently or in tandem (Stellar Computer

Inc. 1987, p. 7, 15). Depending on how a program is compiled (i.e., what

compiler options are specified), and on how busy the computer system is with

other tasks, a program may run in a parallel and vectorized fashion, using

from one to four of the available instruction streams and from one to four of

the vector/floating-point processors. At the time that HAPPI was written, the

C compiler provided with the GS1025 system did not have full support for all

optimization options, and so the present version of program has not been

compiled with these options. Thus, HAPPI does not take advantage of much of

the computing power available on this system. In one test of HAPPI's

processing speed on the Stellar GS1025, the Abingdon Cross image processing

benchmark (Preston, 1990) was performed, with quite unimpressive results

(Doering, 1990). At this writing, the latest operating system release for this

machine, with full support for the C compiler's optimization options, is soon to

www.manaraa.com

46

be installed, making compilation of a vectorized and parallelized version of

HAPPI possible on the GS1025. A fully optimized version of HAPPI will be

considerably more useful for the X-ray Image Processing Group than the

present version. (Note, however, that the speedup from optimization discussed

here only applies to the Stellar machine.)

Although the optimizing compiler on a multiprocessing vector machine

such as the Stellar does most of its work of vectorizing and parallelizing code

automatically, the programmer must sometimes intervene and provide explicit

instructions to the compiler to get the most performance out of a program.

Certain code constructions inherently cannot be optimized. For example, loop

vectorization is inhibited whenever the compiler detects a real or apparent

recurrence in a loop. A recurrence, in the sense used here, is "an assignment

to a variable in one loop iteration, followed by a use of that variable in a

subsequent iteration" (Stellar Computer Inc., 1988a, p. 2-15). An

autoregressive calculation is an example of a recurrence in this sense of the

word, and as it is an inherently serial calculation, it cannot be vectorized.

Since the compiler can not know everything about a program's execution in

advance, it is sometimes unclear whether a certain piece of code can be safely

optimized, and the compiler will refrain from optimizing some optimizable

sections of code out of caution. The programmer may insert special

instructions to the compiler, or compiler directives, in his/her code that tell

the compiler it is "safe" to optimize a section of code. Several directives are

available to enable the different types of optimizations. Obviously, the

programmer should use the optimization directives with care; unpredictable

and elusive errors can arise if the compiler is given license to optimize non-

www.manaraa.com

optimizable code. There are also ways in which the programmer can write

program statements to make the optimizing compiler's task easier. For

example, one optimization technique known as "tree height reduction"

attempts to break an expression into as many as possible sub-expressions as

can be concurrently evaluated. Sometimes a programmer will use

unnecessary parentheses in writing an expression simply to make the

intended order of operations in the expression more clear at a casual glance.

While this practice may result in more readable code, it can also unnecessarily

constrain the compiler's choices as to the order of operations in an expression,

thus overriding the more optimal choice the compiler would have made in the

absence of the unnecessary parentheses (Stellar Computer Inc., 1988a, p. 2-5).

Other speed enhancements to certain of HAPPI’s routines requiring no

code modifications are possible through the use of special routine libraries.

Workstation vendors sometimes provide special optimized versions of standard

C libraries, such as the math library, which take advantage of any special

architectural features of their workstations. The Stellar GS1025 has such a

math library (the "fastmath” library), which features fast-executing

vectorized implementations of trigonometric, inverse trigonometric,

logarithmic, exponential, and hyperbolic functions in both single and double

precision versions. Using the fast math library in place of the regular library

is as simple as changing one line of text in HAPPI's source code files. (Note:

The "fastmath" library was not accessible from C in the version of the

compiler used for the HAPPI project; the new version soon to be installed has

full support for "fastmath.")

www.manaraa.com

48

The speed enhancements discussed thus far are mostly accomplished by

tools supplied as part of a workstation's software development environment,

and require relatively little input from the programmer. However, the

resulting speedup in program execution will only be as good as the tools

themselves, and also can only do so much to speed up inefficient code. It is up

to the programmer to analyze and revise his/her code in ways that the tools

cannot. A first step in doing this is code profiling. Code profiling is the

"running of a program in such a way that is can be analyzed to determine

where it spends most of its time” (Christian, 1988, p. 145). This is usually

accomplished by compiling a program using a compiler option which inserts

additional instructions into the program to allow the monitoring of control

flow. The program is then typically run under control of another, special

program called a profiler, which reports on what percentage of its total

execution time the program spends in each routine. The most time-consuming

sections of code are thus identified, and the programmer can then maximize

the speedup in execution time gained per unit time spent rewriting inefficient

code. One particular routine in the current version of HAPP1 that is known to

need rewriting for speed (though its unusual slowness was not identified with

code profiling in this particular case) is the "Row/Col Fit" routine under the

"Trend Removal" menu. This routine runs at least an order of magnitude

slower in HAPPI than its original stand-alone version, for reasons unknown at

this writing. To date, HAPPI has not been profiled to identify problem code.

One way in which HAPPI might be sped up after a more detailed analysis

of its code is through the judicious choice of control parameters to the fast

version of the memory allocation routine malloc(). The way in which this

www.manaraa.com

routine divides up available blocks of memory, and thus the speed at which it

can satisfy memory allocation requests, is determined by these parameters.

A possible performance enhancement whose potential benefit has not

yet been quantified is dynamic memory management, or "garbage collecting".

HAPPI must ask the operating system to dynamically allocate memory space

for many of its data structures. The operating system services each request by

searching a "memory map” for the next available chunk of contiguous

memory locations of the appropriate size and returning the address of the

beginning of that chunk to HAPPI. When a function within HAPPI completes,

the memory allocated for that function is deallocated, or released back to the

operating system. However, between the time that memory is initially

allocated for a function and the time it is deallocated, other requests for

memory may have been made by other functions. Also, each memory

allocation request asks for a certain size chunk of contiguous memory

locations, and so pieces of contiguous memory smaller than the requested size

are skipped over (and thus left unallocated) by the operating system in

servicing the memory allocation request. These conditions can result in what

is known as "memory fragmentation." Since contiguous chunks of memory

are not necessarily deallocated in the exact reverse order that they are

allocated, there will be "holes" of unallocated memory in the memory map; this

may make future memory allocation requests more difficult to satisfy. If the

memory map becomes extremely fragmented, it may become impossible for the

operating system to satisfy the next memory allocation request, and,

depending on how well it was written to handle such a situation, a program

may crash. A solution to this problem is to periodically move all data in

www.manaraa.com

50

allocated memory to contiguous locations, so that there are no holes in the

memory map. The extent to which HAPPI’s performance degrades due to

memory fragmentation has not been analyzed. The fragmentation

phenomenon is dependent upon such things as which of HAPPI's functions

the user exercises and in what order they are exercised, and also on the

amount of memory available on the host computer system.

A wide spectrum of steps could be taken to enhance the maintainability

of HAPPI's source code. In Chapter 4, a detailed procedure is given for adding

image processing routines to the program. As will be seen in that chapter, the

procedure involves duplication and modification of several code structures,

resulting in redundant code in places. In particular, the routines which fetch

user input for the image processing routines are all very similar in structure.

An alternative to this redundant code is the implementation of a universal

parameter fetching routine, which would be passed the number, names, and

data types of the input parameters for each routine along with any constraints

on their allowed values, and would adapt as necessary to display the

appropriate input parameter menus for each processing routine. This would

ease the programmer's task of adding new routines to HAPPI by eliminating

the tedious and error-prone step of copying and modifying a piece of code,

thereby allowing him/her to concentrate on the more important task of

describing the input parameter data requirements correctly. Also, a universal

parameter fetching routine would slow the rate at which HAPPI's code size

grows with each new processing routine added.

The UNIX programming environment provides a set of programs known

as the Source Code Control System (SCCS). Although HAPPI was not developed

www.manaraa.com

using SCCS, future versions of the program (and any other future large

software projects in the X-ray Image Processing Group, for that matter) would

be much easier to maintain under the SCCS system, as it automates many

administrative tasks in software development. For example, SCCS keeps track

of previous versions of source files in an incremental fashion (only the

changes between versions are stored, so as to conserve disk space); this feature

allows the programmer to return to any previous version of a program, and

also provides an audit trail of changes to source code files. The system also can

be used to control who may edit which source code files, and to protect against

two or more programmers simultaneously editing the same file (such a

situation can result in programmer A losing all his/her changes to the file

when programmer B saves his/her changes after programmer A's changes

have been saved).

In Chapter 2, we briefly discussed the former lack of image processing

program interface standards and the beginnings of such standards that are

only now emerging. HAPPI's maintainability and portability will be enhanced

by supporting such standards in the future. Maintainability is enhanced

because standards tend to "hide" implementation details from programmers

who may inherit HAPPI, allowing new tools and functions to be built onto

HAPPI quickly and with confidence of portability. Standards such as the JPEG

image compression standard will be implemented in special-purpose hardware

on future workstations; thus, support of such standards will also have the

desirable effect of greatly increasing HAPPI's performance.

HAPPI's user interface was built from the low-level Xlib interface to X

windows. As mentioned before, this had the desirable effect of making the

www.manaraa.com

program independent of any particular X toolkit supplied by a workstation

vendor. However, one disadvantage of this approach is that the graphics

routines that were custom written for HAPPI are now deeply embedded in the

code; calls to these routines are used in every function that requires

interaction with the user. This could make it quite difficult to change the

"look and feel", of HAPPI's user interface were it decided such a change is

needed. A way around the problem is to replace all of HAPPI's custom-written

graphics routines with translation routines that would interface to a different

graphics routine library such as one of the many X toolkits now available. The

numerous calls the to present graphics routines could then be left in the code.

It should be noted, however, that this would be just a "patch", a temporary and

inelegant way to change the appearance of HAPPI's interface.

The maintainability of HAPPI from the user's perspective could bear

improvement as well. HAPPI's present method of interacting with image

processing routines written by an end-user is not very sophisticated. The

user-written program is not really integrated into HAPPI's interface at all.

Rather, the user must communicate with HAPPI through file I/O, which

means, quite simply, that he/she must write stand-alone programs that read

and write images in HAPPI's image file format. It is not a trivial task to write a

program that can easily integrate the functionality of a user-written program

into its interface. However, we anticipate that the significant architectural

modifications (e.g., creation of separate UNIX processes for each function, and

connection of these via UNIX interprocess communication mechanisms)

necessary to implement a multi-tasking version of HAPPI will put in place

www.manaraa.com

much that is required for smoothly integrating user-written programs into

HAPPI's interface.

3.4 HAPPI 2.0

Since the initial draft of this chapter, a second version of HAPPI has

been written. This version, known as HAPPI 2.0, runs on a Sun SPARCstation1

IPC workstation, and is installed at this writing on the SPARCstation host

picard.ee.iastate.edu in the X-ray Image Processing Group’s laboratory. HAPPI

2.0 was funded by the Center for Advanced Technology Development (CATD) at

Iowa State University. At this writing, CATD has exclusive control of the

source code; the original version of HAPPI is the only one whose source code

is available for modification by students in the X-ray Image Processing Group.

In this appendix, we outline the differences between the original HAPPI and

version 2.0.

The most significant improvement to HAPPI in version 2.0 is the

implementation of a multitasking capability. Separate UNIX processes handle

the menu functions and image processing functions. Version 2.0 still only

executes one processing routine at a time, but the user is able to use other

HAPPI functions while an image is being processed, and may cue up several

processing routines for sequential execution before the currently executing

routine is completed.

1 SPARCstation is a trademark of SPARC International, Inc., licensed
exclusively to Sun Microsystems, Inc.

www.manaraa.com

54

HAPPI 2.0 has a revised image data structure, which now includes

information on the parent image, and, if applicable, the coordinates within

the parent image from which an image was extracted. All images are now

internally represented with floating-point pixel values (using the C float data

type) for purposes of processing. Support for additional image data types and

for the inverse FFT, as discussed in Subsection 3.3.3, is implemented in HAPPI

2.0. Also included is a new menu of image data type conversion routines for

easy manipulation of the various formats.

HAPPI 2.0’s user interface was written using the Open Look^ user

interface. As discussed in Subsection 3.3.4, the calls to the original version of

HAPPI’s custom-written windows toolkit have been removed in version 2.0,

and replaced with calls to the Open Look toolkit. This significantly changes

the look and feel of HAPPI. Other changes to the user interface include a

reorganization of the menu structure and behavior; function groupings have

been changed, and pop-up menus are no longer allowed to obscure images.

Also, the sometimes awkward “value window” discussed in Subsection 3.3.1 has

been eliminated in favor of a simpler “dialog box” into which the user simply

types the desired parameters.

Many desirable to changes to HAPPI identified in Section 3.3, and a few

existing features of the original version, were not implemented in version 2.0

because of time constraints. No command-line interface was added. The pixel

analyzer, histogram, and image slice graphics functions, and the macro

language of the original version are not present in version 2.0. Also not

implemented were; execution of HAPPI commands from the operating system

2 Open Look is a trademark of AT&T

www.manaraa.com

shell, entry of user-defined mask values, user-specific startup files,

frequency-domain filtering, hardcopy direct from the program, additional

data plot types, graphical/textual image annotation, visual macro

programming, piecewise linear colormapping, and additional support for

integrating end-user processing routines.

www.manaraa.com

56

CHAPTER 4: EXTENDING HAPPI

4.1 Introduction

To be able to interpret results correctly, the image processing

researcher developing a new algorithm must be in complete control of the

algorithm's implementation, and so must write it completely from scratch or

build it from subroutine libraries whose inputs and outputs are well-defined.

However, to use the algorithm in a robust way, as a tool in an overall image

processing scheme, it is useful for the researcher be able to use common

algorithms (other than the one under development) as pre-, post- or

intermediate processing steps without having to also write his/her own

version of these common algorithms. Also, for the researcher to make

his/her algorithm accessible to colleagues working in related research areas,

it is helpful to have an easy-to-use interface to the algorithm; such an

interface may propose default input parameters for the user, guide the user

in selecting from the proper range of values for input parameters, and check

the user's choice of input parameter values for correctness. These

capabilities can be provided by integrating the researcher's algorithm into a

pre-existing image processing software environment. To integrate his/her

algorithm into an existing image processing environment and provide a

robust user interface to the algorithm requires additional programming on

the part of the researcher above and beyond the minimum requirement of

writing the algorithm itself. The researcher might ask: How much of this

programming overhead is justified to reap the benefits?

www.manaraa.com

Experience with HAPPI has shown that, provided they are written

using a few simple conventions, new algorithms may be added to HAPPI in

anywhere from 45 minutes to 4 hours, depending on the complexity required

of the user interaction with the algorithm and other factors, addressed in

later sections of this chapter. (Note that this estimate does not include

compile time; compile time is addressed in Section 4.11, "Putting it All

Together".)

There is a continuing effort to develop image processing algorithms

for NDE applications in the Electrical and Computer Engineering

Department's X-ray Image Processing group at Iowa State University. Thus,

this group has a need for an image processing software environment that is

extensible and that provides the programmer with software tools for building

a friendly user interface onto newly added algorithms. Extensibility was one

of the primary design objectives of HAPPI, and as such, HAPPI addresses these

needs for the X-ray Image Processing Group.

This chapter gives a procedure for integrating image processing

routines into HAPPI. As HAPPI is a large program, the procedure given

cannot anticipate all possibilities, and in practice will need to be

supplemented by referring to the HAPPI Technical Manuals (Volumes 1

through 4) located in the X-ray Image Processing Group's laboratory. These

manuals provide detailed information about individual tools available to the

HAPPI programmer, and include all of the source code for the program as it

stood at the end of the project's funding on June 30, 1990. At this writing, the

source code referenced in this chapter resides in hard disk storage on the

Stellar GS1025 graphics supercomputer in the X-ray Image Processing

www.manaraa.com

58

Group’s laboratory. The hostname of this computer is “fuji.ee.iastate.edu”

(with Internet address 129.186.5.211), and the source code is located in the

directory Ihomelcatdlsrc. As this directory’s access is restricted, it will be

necessary for system users who wish to modify HAPPI to contact a system

administrator to request write priveledges for the directory.

4.2 Required Programming Background

The main requirements for adding image processing code to HAPPI are

proficiency in the C programming language and basic familiarity with the

UNIX operating system (e.g., ability to log on to the system, edit, move, copy

and rename files, and traverse the directory hierarchy). In particular, a

good grasp of the following programming concepts is essential to extending

HAPPI: Data types and type conversions, C function declarations, function

return values, looping and decision constructs (especially the switch

construct), pointers and arrays, the C preprocessor, structures, unions,

enumerated data types, and dynamic memory allocation/deallocation. Brief

explanatory remarks summarizing important concepts are included

throughout to help the reader unfamiliar with C follow the discussion.

However, it is beyond the scope of this document to provide a tutorial on C that

will bridge the gap for the non-C programmer. The reader is referred to the

bibliography for a sample of the many C and Unix texts available. These

references, particularly Kemighan and Ritchie (1988), should be consulted

for formal definitions of the C concepts mentioned in this document. The

Kemighan and Ritchie text is considered to be the de facto specification of

www.manaraa.com

the C language. Basic familiarity with the UNIX source-code-level debugger

dbx is helpful for, but not essential to, the integration of new routines into

HAPPI. A brief example of how to use dbx is given in Section 4.11. In

addition, experience with using HAPPI will help the programmer to better

understand the flow of program control and to anticipate the effects of each

line of code in his/her programs.

4.3 Flow of Control in HAPPI

As previously discussed in Chapter 2, HAPPI's user interface is

organized into a Main Menu and an Information Window (both of which are

always displayed), and a set of Submenus and other various graphical

windows (which are only displayed when activated by the user). We now

describe the flow of program control behind HAPPI's user interface,

particularly for HAPPI's Image Processing Main Menu item.

When HAPPI is started, HAPPI's X Windows environment is set up, and

all static data structures (those that remain constant for the entire time that

the program is running), such as menu text, are initialized. HAPPI's main

routine then draws the Main Menu and Information Window, and enters a

loop waiting for mouse input from the user. The user must select one of the

Main Menu items by positioning the mouse cursor over the item and clicking

the left mouse button. Associated with each of the Main Menu items is a

corresponding C function (i.e., a block of C code to which arguments may be

passed; see the references on C for a formal definition of a C function) known

as a "manager", which draws and removes submenus under the Main Menu

www.manaraa.com

60

items, accepts and evaluates user input, and manages the different HAPPI

functions grouped under that Main Menu item. We will refer to these

managers as "menu managers" to distinguish them from a different type of

manager to be discussed later in this section. Thus, the Image Processing

Main Menu item has associated with it an "Image Processing menu manager",

and similarly for the other Main Menu items. When the user selects a Main

Menu item, program control is transferred to the appropriate menu manager.

This chapter will discuss only the Image Processing menu manager and its

various subordinate managers, as these are the only managers that need

concern the programmer adding new image processing algorithms to HAPPI.

The flow of control at the highest level in HAPPI is illustrated in Figure 4.1.

Figure 4.1. Flow of control in HAPPI at the highest level

www.manaraa.com

HAPPI's image processing functionality is built in several layers. In

the present version of the source code, there is an unfortunate similarity

between the name of the Image Processing menu manager and the name of

one of its subordinate manager functions which does not manage menus, but

rather executes calls to individual image processing algorithms, and the

programmer is cautioned against getting the two confused. The top layer of

HAPPI's image processing functionality, the Image Processing menu

manager, is a function called /mg Process_Manager() (note: the parentheses

appended to the function name are how the C language indicates that

something is a function as opposed to, say, a variable), which is called from

the main program loop when the user selects the Image Processing Main

Menu item. The menu manager Img_Process_Manager() displays the "Image

Processing" submenu under the Image Processing Main Menu item and

enters a loop waiting for additional mouse input from the user.

The user may then select one of several categories, or classes, as termed

in HAPPI's source code, of image processing algorithms from the Image

Processing submenu. There is a separate menu manager which in turn

handles each of the image processing classes. For example, if the user selects

the Noise Filters Image Processing submenu item, control is passed from

/ m g _P r o c e s s _M a n a g e r () to the subordinate menu manager

Noise_Filters_Manager(). Each menu manager for an image processing class

displays a sub-submenu whose items are the image processing routines for its

particular class, and similarly enters a loop waiting for additional mouse

input for a sub-submenu selection.

www.manaraa.com

62

For some of the managers, there are additional submenu layers. For

example, when the user selects the Image Analysis menu item from the

Image Processing Menu, control transfers to the function

Img_Analysis_Manager(), which displays the sub-submenu for the class

Image Analysis and waits for mouse input from the user for a particular sub¬

submenu selection. If the user selects Image Measurement from this sub¬

submenu, control is then passed to another subordinate menu manager,

I mg _M easurement Manager!), which displays a sub-sub-submenu of image

measurement menu selections and waits for mouse input for a particular

selection. The extension to deeper nesting levels of additional submenus is

similar.

The switch construct in C provides selective execution of multiple

functional blocks of code based on a single condition (see the C references for

a formal definition of switch) as follows: The integer expression in

parentheses following the keyword switch is evaluated, and the list of case

labels following the switch is examined one by one until the constant integer

expression following the word "case" in the case label matches the value of

the integer expression following switch, whereupon all code following the

matching case label is executed. The function /mg_Process_Manager() and

all of its subordinate menu managers (e.g., Noise_Filters_Manger(), etc) taken

together may be conceptualized as a large nested switch construct as

illustrated in Figure 4.2. All text between "/*" and "*/" is a comment and not

part of the code (e.g., /* This is a C comment */). The outer layer of this

switch construct, I mg _P rocess _Manager() "switches" on the user's selection

from the Image Processing submenu, executing code following the matching

www.manaraa.com

63

case label, which passes control to a subordinate menu manager that is itself

essentially a switch construct and which in turn switches on the user's

selection from the sub-submenu displayed by the subordinate menu manager.

When the user selects a menu item that is at the bottom of the menu

hierarchy (i.e., has no submenus beneath it), the appropriate image

processing algorithm is called by the manager which currently has program

control.

When the user selects a particular algorithm for execution, the menu

manager which currently has program control, as part of the "Code to execute

algorithm" shown in Figure 4.2, prompts the user for the input image(s), and,

in some cases, performs some error checking on these images when the

selected algorithm requires input images of particular dimensions or data

types. In most cases, the manager then calls the selected algorithm through a

call to the function /P_manager(). The reader is cautioned against confusing

the function IP_manager() with the function / mg _P roc e s s _M anage r(), as

mentioned above. IP_manager() is different from /mg_Process_Manager()

and its subordinate menu managers in that, among other things,

IP_manager() does not itself display further menus and switch on user input.

The function IP_manager() and all of its support functions (to be discussed

below) will be collectively referred to as the "Image Processing Manager", as

distinguished from the image processing menu manager,

ImgProcess _Manager().

The Image Processing Manager is itself structured in three main

layers. The outermost layer, IP_manager() itself, prepares for execution of

an image processing algorithm by setting up a return location in its code to

www.manaraa.com

64

which control will return in the event that an image processing algorithm is

aborted. / P _manager() then calls, in sequence, two other functions,

GetParams() and CallIP(), which constitute the second layer of IP_manager().

The third layer of IP_manager() consists of various support routines called by

GetParams() and CallIP().

/* Top level: Img_Process_Manager() */

switch(User selection from Image Processing submenu)

(
case (1st submenu item) :

/* 1st submenu manager */
switch(User selection from sub-submenu 1)

{

case (1st sub-submenu item) :
(Code to execute algorithm)

case (2nd sub-submenu item) :
(Code to execute algorithm)

case (i-th sub-submenu item) :
(Code to execute algorithm)

default:
(Default code)

}

case (2nd submenu item) :
/*2nd submenu manager */

switch(User selection from sub-submenu 2)

(
case (1st sub-submenu item) :

(Code to execute algorithm)
case (2nd sub-submenu item) :

(Code to execute algorithm)

etc.

Figure 4.2. Nested switch construct structure of Img_Process_Manager()

www.manaraa.com

65

The function GetParams() prompts the user for input parameters for

the selected algorithm and places the user's inputs into a global "parameter

block"; the parameter block is called /Pparam, and is a C structure variable.

Structure variables are compound data types that are custom-defined by the

programmer. Structure variables are used to group together several pieces of

data - usually when these data are of different types (e.g., integer, character,

and floating point) - as a single entity. For example, in a program to keep

track of hospital patients, a programmer might define a "patient" structure

variable, which groups together different types of information about a

patient, such as name, address, blood type, height, weight, etc. using a

collection of integer, character, and floating point data. The fields, or

"structure members", as they are termed in C, in IPparam are a scries of

character, integer, floating-point, image, and array variables which store the

current default input parameters for all of HAPPI's image processing

algorithms. The function CallIP() makes the call to the actual image

processing algorithm, passing the input parameters from the global

parameter block, IPparam, to the algorithm. This layered structure of the

Image Processing Manager was chosen to facilitate flexibility in

implementation of HAPPI's built-in macro language; the macro language can

bypass the parameter fetching, calling the image processing algorithms

directly. Two arguments, the class and subclass of the processing algorithm

to be executed are passed to IP_manager(). The class refers to the submenu

under which an algorithm is found, and the subclass refers to the particular

algorithm from that submenu. Thus, for example, the "Mathematics" selection

from the Image Processing menu is an example of a class, and the "Add

www.manaraa.com

66

Images" selection from the Mathematics menu is an example of a subclass. An

optional third argument, subclass2, may also be passed to IP_manager(), but it

is currently not used. Both GetParams() and CallIP() are passed the class,

subclass, and subclass2 arguments from IP_manager(), and "switch" on these

arguments in much the same way as the menu managers switch on the user's

mouse input.

GetParams() switches on the class argument, and calls a support

routine for that particular class, passing the value of subclass to the support

routine. The names of the support routines are derived from the name of the

particular class and prefixed with "P_" (the "P" derives from "parameter

fetching"); for example, the support routine for the class mathematics is

called "P _Math()". The support routine called by G etP arams() for the

particular value of class then switches on the value of subclass passed to it

and calls the specific parameter fetching routine for the selected class and

subclass. The parameter fetching routine then displays menus and windows

for the user to enter input parameters, and updates the global parameter

block IP par am to reflect user input. When the user is satisfied with the

values of the input parameters for the selected algorithm, and clicks "OK" on

the parameter menu displayed by the parameter fetching routine, program

control is transferred from the parameter fetching routine back up the

hierarchy to the support routine, then to GetParams(), and back to

IP _manager().

Once control returns from GetParams(), IP_manager() calls CalllPO,

again passing the value of the class and subclass arguments. Within CalllPO,

a "destination image" is created and given a default name based on the name

www.manaraa.com

67

of the "source image" for the routine. The "source image" is the image data

structure that has been selected by the user as an input image for the

algorithm to be executed, and the "destination image" is the image data

structure in which the output image from the algorithm will be written.

Until a processing routine has successfully (without encountering an error

or being aborted by the user, for example) completed, the destination image is

considered a temporary entity, to be immediately erased on unsuccessful

completion of a processing routine. The variables temp_img and temp _img2

are defined in the file Globals.h as global image pointer variables, and are

used to point to the destination image(s) during image processing; their

values are then assigned to destination image pointers in the global

parameter block / P p ar am only after a processing routine completes

successfully. The image pointer temp_img is assigned to point to the first

(temporary) destination image within CallIP(). If a processing routine

produces two output images, the second destination image is created in a

support routine (to be discussed below) called by CalllP(), and in the support

routine, the image pointer temp_img2 is assigned to point to the second

(temporary) destination image. After creating the first destination image and

assigning its address to the pointer temp_img, CallIP() then "masks out", or

suppresses mouse input and activates abort trapping; the mouse input

masking is done to prevent buildup of useless mouse input during execution

of an image processing algorithm. The activation of abort trapping allows

the user to cancel an image processing operation in the event that, for

example, the processing takes longer than the user is willing to wait, or the

user accidentally started the processing with incorrect input.

www.manaraa.com

68

Next, CallIP() switches on the class argument and calls a support

routine for the particular value of class, passing the value of subclass to the

support routine. The names of the support routines are derived from the

names of the corresponding classes and prefixed with a "C_" (the "C" derives

from "Call image processing routine"). For example, the support routine for

the class mathematics is called "C_Math()". The support routine called by

CalllP() for the particular value of class then switches on the value of

subclass passed to it and calls the specific image processing routine for the

selected class and subclass. If the processing routine to be called produces

two output images, the code following the case label for the particular routine

creates the second destination image before calling the actual routine. Input

parameters of the algorithm are passed to the routine as function arguments

rather than having the individual routines read the parameters directly from

the global parameter block; this was done to allow the macro language to

work more flexibly with the image processing routines. On successful return

from an image processing routine, control returns back up the hierarchy to

the support routine, CalllP(), /P_manager(), the menu manager which called

IP_manager(), Img_Process_Manager(), and hence back to the main loop.

Some additional tasks are performed on the way back up the hierarchy.

For example, before CalllP() returns control to /P_manager(), it deactivates

abort handling, "masks in" (i.e., stops suppressing) mouse input, and assigns

the value(s) of the temporary image pointer(s) temp_img and temp_img2 to

the destination image pointers in the global parameter block IPparam. Also,

before IP_manager() returns control to the menu manager which called it, it

either scales or clips the destination image according to the values of two flag

www.manaraa.com

69

variables, the overflow and underflow flags, in IPparam. The destination

image is created with pixels of data type int, which is (on most computer

systems) a 2-byte signed integer and may thus take values from

approximately -32000 to +32000. This is done to prevent the wraparound

errors that may occur when storing the results of operations on 1-byte

numbers in a 1-byte variable. For display as a grey-scale image, the pixels of

the destination image must be converted to the type unsigned char which is

(on most computer systems) a 1-byte unsigned integer and may thus take

values from 0 to 255. The conversion may be done cither with scaling or

clipping. Also, on successful return from /P_manager(), the menu manager

which called IP_manager() adds the destination image to a data structure

known as the "image buffer" which keeps track of all images in memory and

whether or not they are currently displayed on the screen. The function

which adds the destination image to the image buffer also automatically

displays the image on the screen.

The hierarchical structure of HAPPI's image processing functionality

is summarized by Figure 4.3. The figure is interpreted as follows: The first two

layers represent the Image Processing menu manager and its subordinate

menu managers, respectively. The remaining layers represent the structure

of the Image Processing Manager. The top of the figure corresponds to the

highest level of hierarchy. Program control passes both up and down

between blocks, but does not cross vertical lines. Thus, for example, program

control does not pass directly from GetParams() to CallIP(), but rather passes

up to IP_manager() from GetParams() and then back down to CallIP().

www.manaraa.com

lmg_Process_ _Manager()

Menu managers for each class

IP_manager()

GetParams() Cal 11P ()

Support routines Support routines

Parameter fetching routines Image processing routines

Figure 4.3. Hierarchical structure of HAPPl's image processing functionality

4.4 HAPPI Data Objects

In order to access, move, and alter data efficiently, HAPPI makes liberal

use of the data type definition capabilities of the C language. Several

structure, union, and enumerated data types are defined within HAPPI to

allow the programmer to refer to complex data objects, such as images and

convolution masks, with a single variable name. This section will discuss the

data structures defined in HAPPI that are relevant to the addition of image

processing routines to the program. These include images, templates, the

global parameter block, the image buffer, and the "class" and "subclass"

variables that are passed to IP_manager().

www.manaraa.com

HAPPI's image data structure includes not only pixel intensity values,

but a variety of other information as well, including the image's name, its

processing history (a data structure nested within the image data structure

which records all processing steps that have been performed on the image

since the raw image data was acquired), its height and width, the data type of

its pixels (e.g., 1-byte unsigned integer, 2-byte signed integer, floating-point,

etc.), its global statistics (e.g., max, min, mean, etc. of the entire image), a set

of flags indicating which of the above fields are defined (i.e., have valid data),

and a flag indicating whether the image has been saved to disk or if it exists

only in volatile memory. The definition, or structure template, for HAPPI's

image data structure is found in the file "images.h". The typedef statement in

C is used to establish another name for a data type, and is most often used to

define shorthand names for programmer-defined data types such as structure

and union variables. A typedef statement is used in images.h to define the

word IMAGE (note that C is case-sensitive, so that "IMAGE" is different from

"image" in C) as data type "pointer to an image structure variable". This

means that when we make a declaration such as:

IMAGE s_imagel;

in a piece of code we are writing for HAPPI, the variable s_imagel is declared

as a pointer to an image structure variable. A pointer is simply a variable

which holds the address of a piece of data; thus, s_imagel in the above

example holds the address of, and thus "points to", an image structure

variable. The reader is referred to the file images.h (or to a hardcopy of this

www.manaraa.com

72

file in the section "Headers" of the HAPPI Technical Manual, Volume 1) for a

complete definition of HAPPI's image data structure. All defined data types

that are used as structure members of the image data structure are also

defined in the file images.h, with the exception of the defined type HISTORY,

which is defined in the file "history.h". The HISTORY defined data type is a

special kind of structure variable known as a linked list node, and is used to

store a single entry in the image structure's history structure member.

It is not necessary for the programmer to work directly with the

structure members of an image structure variable, as a number of utility

functions, discussed in the next section, are provided in HAPPI for reading

from and writing to the image data structure. The reader should, however,

refer to the image structure definition in the file images.h when there is any

question as to the data types of the various structure members.

Convolution masks, or "templates" as they are called in HAPPI's code,

are defined as structure variables in much the same way as images. The word

TEMPLATE is defined with a typedef statement as data type "pointer to template

structure variable", and so when we write a declaration such as:

TEMPLATE lowpass;

we are declaring the variable lowpass as a pointer to a template structure

variable. The structure definition for templates is also found in the file

images.h. As HAPPI's template structure variables are not as large as its

image structure variables and are less commonly used in the program, there

are no utility routines for manipulating template structure variables; the

www.manaraa.com

73

programmer must access the structure members of template structure

variables directly in his/her code. For example, to reference the "hot_row"

member of a template structure variable which is pointed to by the pointer

variable lowpass, we would write "lowpass -> hot_row", where we have used

the structure member notation pointer_to_structure_variable -> structure

member. (Note the difference between this example and the structure

member reference in the previous example using the "dot" notation; the dot is

used with structure variables, while the "minus-sign-greater-than-sign"

notation, ->, is used with pointers to structure variables.) The hot_row and

hot col members of the template structure refer to the row and column

numbers, respectively, of the origin of the template and thus determine

which template cell which will serve as the convolution sum accumulator in

convolution operations. The size member refers to the number of rows or

columns of the (square) template. The kind member refers to the data type of

the template weights, integer or floating point. The i nt _te mp late and

float _template members are pointers to integer and floating-point matrices,

respectively, of the template weights themselves. The denom member refers

to "denominator"; in HAPPI's convolution routine, when a convolution sum is

accumulated into the accumulator cell, it is divided by the value of denom

before being written into the destination image.

As discussed in the previous section, input parameters for all of

HAPPI's image processing algorithms are stored in the global parameter

block IPparam. This structure variable is declared in the file "Globals.h". The

programmer adding image processing routines to HAPPI will likely need to

add to this structure definition. The structure tag, that is, the name used as

www.manaraa.com

shorthand for the structure template, is called "param”. The structure

template is simply the list of structure members and their data types. The two

declarations shown in Figure 4.4 are excerpted from the file Globals.h, and

are an abbreviation of the declaration of IPparam.

struct param {
IMAGE s_imagel,

s_image2,
d_imagel,
d_image2;

char peak_name[20],
conv_name[20];

int max,
min,

bmsize;
long int seed;
short overflow_flag,

structure;
char logic_val,

fit_type;
float snratio,

bmvar;
TEMPLATE conv_temp 1;

extern struct param IPparam;

Figure 4.4. Abbreviated declaration of global parameter block in Globals.h

The line beginning with struct is the start of the structure declaration

which assigns param as a structure tag for the structure template, which

consists of everything between the left and right curly braces (e.g.,

www.manaraa.com

{everything in here is a structure template}). The line beginning with

extern declares IPparam as a structure variable using the template referred

to by the tag par am. The modifier extern, which stands for "external", makes

the IPparam structure variable accessible from all parts of the program.

Thus, from any point in HAPPI's code, we may refer to the image pointer

s_imagel in the global parameter block using the structure member notation

"IPparam.s_imagel". Similarly, we would refer to the integer max using the

notation "IPparam.max".

The data types of the class and subclass variables which are passed to

IP _manager() are "enum", that is, they are enumerated types. The data type

enum allows the C programmer to conveniently assign a set of descriptive

names to the integer values that may be taken on by an integer variable.

These assigned names may then be used in relational tests and assignment

statements involving the variable. As an example, consider the following

declaration:

enum (no, yes) answer;

The variable answer is an integer variable, however, after writing the above

declaration, we may compare it to or assign it the values 'yes' and ’no'. Thus,

we may write:

answer = yes;

www.manaraa.com

instead of:

answer = 1;

and:

if(answer == yes)
(execute this code)

instead of:

if(answer == 1)
(execute this code)

The C compiler assigns integer values to the enumerators ’yes’ and 'no', but

this is transparent to the programmer. The integer values in the enumerator

list (everything between the curly braces) may be explicitly specified by the

programmer, if desired. This option is used in HAPPI. Two typedef statements

are used in the file Globals.h to define the words IP_CLASS and IP_SUBCLASS

as enumerated types for the entire list of image processing algorithm classes

and subclasses, respectively, and integers are explicitly assigned to each class

and subclass name. The data type declarations:

IP_CLASS class;
IP_SUBCLASS subclass;

thus declare the variables class and subclass as enumerated types with the

enumeration lists defined in Globals.h. The programmer adding processing

www.manaraa.com

77

routines to HAPPI will need to add to this enumeration list and so should

familiarize him/herself with it.

The image buffer is a data structure in HAPPI which holds image

structure pointers and keeps track of the display status of all images in

memory (images loaded into the computer system memory by HAPPI may be

displayed on the screen or "hidden" from view to reduce screen clutter). The

image buffer is a structure variable named "buf", consisting of three arrays:

an integer array, called index[], of indices used to assign a unique number to

each image in the buffer, an array of image pointers, called images[/, (of

defined data type IMAGE), and a character array of status indicators, called

valid[], (In C, arrays are addressed using the array offset in square brackets

following the array name.) As character variables are treated as 1-byte

integers in C, the display status indicators in the image buffer may be

assigned integer values between -128 and 127. A value of 0 is assigned to a

status indicator if the entry in the buffer is empty or has been vacated by an

image that has been removed from memory. A value of 2 is assigned to the

indicator if the image is currently in memory and displayed; a value of 4 is

assigned if the image is currently in memory but not displayed. The structure

member notation buf.index[i] then refers to the index of the image in the i-th

location of the image buffer; buf.images[i] refers to the image pointer in the

i-th location of the image pointer, and buf.valid[i] refers to the status

indicator of the image in the i-th location of the image buffer. The image

buffer is a global variable, and is declared in the file Globals.h. The

programmer adding image processing routines to HAPPI may occasionally

find it necessary to search the image buffer to retrieve an image pointer

www.manaraa.com

78

corresponding to an image index; image indices are returned by certain

utility functions in HAPPI.

4.5 Tools for Manipulating Image Data

As mentioned above in the discussion of HAPPI's image data structure

(Section 4.4), a number of utility functions are provided within HAPPI to

manipulate image structure variables. This section will give a general

discussion of these utilities; the reader is referred to the "Image Operations"

sections of the HAPPI Technical Manual, Volume 1, for the details. The source

code for all of these functions is found in the file "iops.c".

The first group of functions to be described will be referred to as the

image structure member read/write/test functions, or "image structure

access functions" for short. Recall that HAPPI's image data structure

includes, among other things, the image's name, height and width, and a set

of global image statistics. The image structure access functions are used to

read from, write to, and test the validity of members of the image data

structure. We may test the validity of the global image mean, for example,

using the image structure test function test_mean(). This function is passed

an image pointer (data type IMAGE) and returns a long (4-byte on most

computer systems) integer equal to 0 if the image mean is not defined, and not

equal to 0 if it is defined. Similarly, the function get_mean() is passed an

image pointer, and returns the image mean as a float value. If the value of

the image mean has not been calculated and initialized, the value returned by

get_mean() will be meaningless (no pun intended). Thus, if we want to

www.manaraa.com

retrieve the mean value of an image, we should first test its validity with

test_mean(). The function put_mean() is passed an image pointer and a

floating-point value, and writes the floating-point value to the image mean

structure member. The image structure access functions are all named

similarly, with prefixes "get_", "put_", and "test_" for the functions to read,

write, and test, respectively, the various image structure members.

Another group of functions that accesses image data structures are the

statistics calculating functions. These functions are passed an image pointer,

and calculate the values of the various image statistics defined in HAPPI's

image data structure, then write the calculated values to the appropriate

image structure members. For example, the function find _min _max() is

passed an image pointer, and finds the global minimum and maximum of the

image and writes these values to the image structure members min and max,

respectively.

Memory space for image structures is allocated and deallocated by the

image allocation functions. The functions g r ey _s c a l e _i ma g e () and

lar ge _scale _image() allocate memory for images with 1-bytc unsigned

integer pixels and 2-byte signed integer pixels, respectively, and initialize all

fields to undefined values. The image thus created may then have data

assigned to it, for example from the output of an image processing algorithm.

The function dispose_of_image() is passed a pointer to an image pointer, and

frees the memory used by the image, making it available to the host computer

system again. This function does not take care of saving the image, so care

should be exercised in its use. The functions c r e a te _ma t r ix() and

remove_matrix() allocate and deallocate, respectively, the memory for image

www.manaraa.com

80

pixel data. Recall that the image pixel data may be one of several types; the

structure member kind in the image structure indicates this data type. These

two functions examine the kind structure member of the image, using an

image structure access function called get_kind(), to determine how much

memory to allocate/deallocate.

Three image pixel data type conversion routines,

convert_grey_to_large(), c o nv e r t _lar g e _t o _g r ey _by _c lip (), and

convert_large_to_grey_by_scale() are provided in HAPP1. Recall that before

CallIP() makes the call to the image processing routine selected by the user, it

creates a "destination image" where the routine writes its output. (Note: In

some cases, a second destination image is required; the second destination

image is usually created in the support routine called by CallIP().) The

destination image is created as what is called a "large scale image" in HAPPI; a

large scale image is simply an image whose pixels are 2-byte signed integers

(and may thus take values from approximately -32000 to 32000). This is done

to avoid overflow and/or underflow within image processing algorithms.

When a destination image is to be displayed, however, it must be converted to

what is called a "grey scale image" in HAPPI; a grey scale image is simply an

image whose pixels are 1-byte unsigned integers (and may thus take values

from 0 to 255). The pixel data type conversion routines provide the

conversion capabilities needed to work with the above two types of images.

Four image copy functions, copy_image(), copy_image_header(),

copy_partial _ma.tr ix(), and copy_matrix(), are provided to copy various

amounts of an image structure to another image structure. These functions

www.manaraa.com

are currently only used by the macro language, but may be used within

image processing algorithms as well.

4.6 Image Processing Support Functions

A number of functions routinely needed in image processing

algorithms are provided in HAPPI by a set of image processing support

routines. Such functions include memory allocation and deallocation for

matrices and vectors, clearing and setting the overflow and underflow flags,

random number generation, general n-dimensional forward and inverse

Discrete Fourier transforms, matrix inversion, max and min operations, and

sorting. This section gives a brief summary of these functions. All of the

source code for these functions is located in the file IProutines.c, and

documentation for these routines is in the "Support Routines" section of

Volume 2 of the HAPPI Technical Manual.

The set of memory allocation and deallocation routines for matrices and

vectors allows the user to create and destroy matrices and vectors of data

types int, long (4-byte integer), and float. The allocation routines are named

with the prefix "make_", followed by a letter 'i', T, or no letter (for int, long,

and float, respectively), followed by the word "matrix" or "vector". For

example, the routine make_ma.trix() allocates a matrix of float values; the

routine make_imatrix() allocates a matrix of int values. The desired starting

and ending indices of the matrix or vector are passed to the routines, and the

routines return pointers to the appropriate data types. The ability to specify

the starting and ending indices of matrices and vectors instead of just their

www.manaraa.com

82

dimensions allows the programmer to use whatever array addressing scheme

is most appropriate to the problem at hand. The names of the deallocation

routines are similar to their allocation counterparts, with "make" replaced by

"free"; the function free_matrix(), for example, frees a float-valued matrix.

The return types of these functions are declared in the file "IProutines.h".

The four functions clear _underflow(), c l e ar _ov e rflow (),

set_underflow(), and set_overflow() clear and set the underflow and overflow

flags in the global parameter block. Recall that the values of these flags

determine whether the large-scale destination image is clipped or scaled for

display. The programmer would use these routines in an algorithm, for

example, by examining the destination image for values outside the grey¬

scale image range of 0 to 255 and setting the flags according to the desired

action before passing control back to the calling routine. If either the

overflow or underflow flag is set, the destination image will be scaled for

display; otherwise it will be clipped. If the destination image was required to

always be scaled for display, the programmer would unconditionally set one

or both flags in his/her code.

A group of mathematics routines rounds out HAPPI's image processing

support functions. The routine matrix_inverse() calculates the inverse of a

float-valued matrix of arbitrary dimensions using L-U decomposition and

backsubstitution. The routine fourn() performs a general n-dimensional

radix-2 forward or inverse fast Fourier transform. The routine gamlog()

returns the natural log of the gamma function. The routine gasdev() returns

zero-mean unity-variance gaussian deviates. The functions max() and mini)

return the maximum and minimum, respectively, of an arbitrary number of

www.manaraa.com

83

integer arguments. The function qcksrt() implements the Quicksort

algorithm. The functions rand_u() and rand_p() return uniform and Poisson

deviates, respectively. Except for max() and min(), the above mathematics

routines are taken directly from, or adapted from, Press et al. (1988).

4.7 A General Image Processing Routine Code Template for HAPPI

As may be seen from the preceding discussion, HAPPI's image

processing routines lie near the bottom of the hierarchy of the program's

flow of control. Because of this, they are largely isolated from, and function

independently of, the rest of the program. As mentioned before, this

independence of image processing routines from the rest of the program was

designed into HAPPI for flexibility in implementing the built-in macro

language. The independence of HAPPI's image processing routines from the

rest of the program also makes it relatively straightforward to code an

algorithm for integration into HAPPI. This section presents a general image

processing routine code template for HAPPI.

The conventions, function calls, preprocessor control lines, and

variable declarations used to code an algorithm for HAPPI are illustrated in

the following code template in Figure 4.5. (The reader is cautioned not to

confuse our use of the word "template" here with previous references to

convolution templates. By "code template" we mean a generic, model piece of

source code which is to be modified and added to by the programmer to

generate image processing source code modules.) Note that the line numbers

on the left side of the figure (and in all subsequent example code in this

www.manaraa.com

84

document) are not part of the C source code file; they are included only so that

each line of code may be referenced conveniently in the discussion. Also

note that since lines of C code are terminated with a semicolon, a single long

line

#include "constants.h"
#include "Globals.h"
#include "errors.h"
#include <stdio.h>
#include <signal.h>
#include "IProutines.h"

1

2
3
4
5
6
7

void Ne wrouti ne(s_i mage l,s_ image 2, d_image,argl ,arg2,arg3)
/* Comments describing the routine */
IMAGE s_image 1,

s_image2.
d_image;

int argl;
float arg2;
char arg3;

8 GREY_SCALE_PIXEL **s_arrayl,
9 **s_array2;
10 LARGE_SCALE_PIXEL **d_array;
1 1 int height,
1 2 width,
13 i,
14 j;
15 s_arrayl = get_grey_matrix(s_imagel);
16 s_array2 = get_grey_matrix(s_image2);
17 d_array = get_large_matrix(d_image);
18 height = get_height(s_imagel);
19 width = get_width(s_imagel);
2 0 /* Your code goes here */
}

Figure 4.5. General image processing algorithm code template for HAPPI

www.manaraa.com

85

We now discuss the code template line by line. The lines beginning

with "#include" are preprocessor control lines which simply tell the C

preprocessor to copy the contents of the named files into the source code at

the location of the #include line before attempting to compile the code. The

files named in the #include lines contain the data type definitions and

function declarations necessary for the C compiler to make sense of the

function calls and type declarations used in the rest of the source code. Line 1

begins the function header (i.e., the function name and the type declarations

of its arguments); many of the image processing routines in HAPPI are

declared as type void (meaning that the function itself does not return a

value), however, if the programmer wishes to return a value, say, an error

code, he/she should declare the routine as an int. The name of the routine is,

appropriately, "Newroutine", and its argument list, including two source

images, a destination image, and three algorithm parameters, follows in

parentheses. The names of HAPPI's image processing routines begin with a

single capital letter by convention; this is not a requirement, but helps

programmers recognize an image processing routine as such. Lines 2

through 4 declare the first three arguments to Newroutine() as data type

IMAGE, which, recall, is a pointer to an image structure variable. Lines 5

through 7 declare the algorithm input parameters argl, arg2, and arg3 as

integer, floating-point, and character variables, respectively. The argument

list of Newroutine() is representative rather than definitive. The

programmer should add or delete arguments of the required data types as

appropriate. The programmer should place all of the algorithm's required

input parameters in the new routine's argument list; image processing

www.manaraa.com

86

routines should neither need to access the global parameter block directly,

nor should they prompt the user for inputs through the standard I/O device.

Passing all algorithm parameters in the function argument list insures that

the routine is truly a "black box" which, to do its job, needs only the set of

arguments passed to it from wherever in HAPPI (e.g., Image Processing

Manager or macro language) it is called. Exceptions to this rule include

image processing routines which require the user to, for example, visually

inspect the image and use the mouse to identify particular pixel coordinates to

be used in the algorithm. In some of these cases, prompting for user input

within the algorithm itself may be necessary; how to handle such cases is up

to the programmer's judgement and creativity.

Lines 8 and 9 declare the variables s_arrayl and s_array2 as data type

"pointer-to-pointer to type GREY_SCALE_PIXEL". The defined data type

GREY_SCALE_PIXEL is declared in Globals.h with a typedef statement as

another name for the C data type unsigned char. This is the data type of a

"grey scale image", as it is termed in HAPPI (Cf. Sections 4.4 and 4.5 above).

Line 10 declares the variable d_array as data type "pointer to pointer to type

LARGE_SCALE_PIXEL". LARGE_SCALE_PIXEL is also declared in Globals.h, as

another name for data type short int, which is a signed integer of (at least,

depending on the particular compiler) 2 bytes. This is the data type of a

"large scale image".

Lines 11 and 12 declare integer variables to hold the values of image

height and width, respectively. If the algorithm uses source and destination

images that are all of the same dimensions, then only one set of such

variables is needed; otherwise, the programmer should declare as many

www.manaraa.com

87

additional such variables as the algorithm and input data dictate. Lines 13 and

14 declare a couple of general-purpose loop index variables; generally, at

least one pair of these is needed for addressing the individual pixels of the

source and destination image(s). Lines 15 and 16 make use of the image

structure access function get_grey_matrix() to assign matrix pointers to the

variables s_arrayl and s_a.rra.y2, respectively. After execution of these lines,

the programmer may reference the image pixel data in s_imagel and

s_image2 using the notations s_array 1 [i][j] and s_array2[i][j], respectively

(where i the row number and j is the column number, both indexed from

zero). Line 17 performs a similar task, and after its execution, the

programmer may reference pixel locations in the (large scale) destination

image, d_image, using the notation d_array[i][j]. Lines 18 and 19 use the

image structure access functions get_height() and get_width() to assign the

height and width, respectively, of s_imagel to the variables height and width.

At this point, we may use the variables s_arrayl, s_array2, d_array, height,

and width to perform some image processing task, which may be generalized

by the code fragment in Figure 4.6. The code fragment of Figure 4.6 would be

placed in the code template of Figure 4.5 at line 20. This code fragment

assigns to every pixel in the destination image a value that is some function

of the input image data and the algorithm input parameters argl, arg2, and

arg3. In practice, most image processing routines will have more than three

lines of processing code, but the code fragment of Figure 4.6 will likely be

present in one form or another in any processing routine which returns a

destination image.

www.manaraa.com

88

for(i=0;i<height;i++)
for(j=0;j<width;j++)

d_array[i][j] = somefunction(s_arrayl,s_array2,argl,arg2,arg3);

Figure 4.6. Code fragment generalizing image processing task

The coding of the algorithm itself past line 20 of the template of Figure

4.5 is, for the most part, independent of the rest of HAPPI, and is composed of

pure C code and any functions written by the programmer. However, HAPPI's

utility functions can and should be used to advantage to access image

structure data fields and allocate/deallocate memory. The programmer is

encouraged to examine the implementations of the algorithms already

included in HAPPI for usage examples of the utility routines. The file

"IProutines.c" contains the majority of HAPPI's image processing routines.

The programmer is discouraged from defining any external (global)

variables in his/her source code file; with more than one person modifying

the program, it is easy to cause confusion when externals are declared in

processing routines. If a global variable is deemed to be truly necessary, it

should be declared in Globals.h.

To avoid unnecessarily recompiling existing image processing code,

new image processing routines under test are usually placed in a separate

source code file from the file containing routines already included in HAPPI.

Three files currently in use are IPtest.c, IPtest2.c, and IPtest3.c. These files

contain the #include lines of the code template of Figure 4.5, and the names of

these files are included in the "make file" for HAPPI. The make file is part of

the UNIX make utility program; once the programmer places his code in a file

www.manaraa.com

89

that is specified in the make file for HAPPI, recompiling the program to test

the new code is as simple as typing "make" at the UNIX prompt in the source

code directory.

4.8 Handling Errors, I/O, and Other Details

In this section, we provide some tips and directions on how to return

error codes, handle source and destination images of differing sizes, fetch

graphical user input of positional information, and write output to HAPPI's

information window.

Suppose that data-dependent error conditions may arise in an

algorithm. Rather than returning a meaningless output image to the user, we

would like to inform him/her of the nature of the error, so that more suitable

data for the algorithm may be chosen. Error codes may be returned by all of

HAPPI's image processing routines. By convention, HAPPI's error codes are

all returned as negative integers. Thus, to return an error code from an

image processing routine, the programmer would declare the routine itself as

having the return type int (instead of void), and would return a negative

integer on encountering the error condition in his/her code. The first 21

negative integers are individually defined as specific types of errors; the

definitions of these error types may be found in the file "errors.h". Thus, for

example, if a divide-by-zero error occurred, we could indicate this by

returning the value defined for divide-by-zero errors, -1, or we could

optionally use the preprocessor macro defined in errors.h for this error and

write return(DlVlDEBY ZERO); in our code at the appropriate spot, letting

www.manaraa.com

90

the preprocessor take care of the text substitution. Since all of the levels of

the Image Processing Manager return integer values, the error code will be

propagated back up the hierarchy of function calls in the Image Processing

Manager until its value is examined and the error is handled. Errors are

usually handled by the menu managers under the Image Processing menu

manager (recall that it is these managers that call IP_manager()); typically,

the menu manager will check to see if the returned error code is negative,

and if it is, makes a call to a generic error display routine called

system_error(), passing it the error code. The routine system_error() uses

the error code to look up a string defined for the particular error code in the

file “errors.c” and displays an error message to the user. Another error

display routine, display_error(), displays a simple text message, and is for use

in handling error conditions which do not have an error code defined in the

file errors.c. Both of the error display routines, sy stem _e r r o r () and

display_error(), are found in the file errors.c. Other circumstances under

which the programmer will likely want to use returned error codes are in

memory allocation and matrix inversion; attempting to use unsuccessfully

allocated memory will, at least, give meaningless results, and at most, will

crash the program. The matrix and vector allocation routines described in

Section 4.6 return a null pointer if the requested amount of memory cannot

be allocated.

Implementation of some image processing algorithms may involve

different sized source (input) and destination (output) images. For example,

the radix-2 FFT in HAPPI accepts input images of arbitrary dimensions up to

512 by 512 pixels, zero-padding the input image to integer powers of 2

www.manaraa.com

(independently in each spatial dimension), and outputs the magnitude of the

frequency-domain image using the zero-padded dimensions. Since the

destination image is created within the CallIP() routine of the Image

Processing Manager with the same dimensions as the source image, routines

that require different dimensions for source and destination images must

destroy the destination image created by CallIP() and create their own

destination image(s) with the required dimensions. An example of the code

necessary to do this is shown in Figure 4.7. This code should be included,

when necessary, in the processing routine itself as part of the “Your code

1 char imgname[15];
2 get_name(d_image,imgname);
3 dispose_of_image(&d_image);
4 d_image = large_scale_image();
5 make_not_current(d_image);
6 put_name(d_image,imgname);
7 create_matrix(newheight,newwidth,d_image);
8 d_array = get_large_matrix(d_image);

Figure 4.7. Code fragment to destroy original destination image and create
new one

goes here” section of the code template of Figure 4.5. The code fragment is

discussed here line-by-line. Line 1 is not an executable statement, but rather

a declaration of the string img name, and is included for clarity. Line 2

fetches the name of the destination image from d_image and places it in

imgname. Line 3 destroys the destination image that was created by CallIP()

before program control was passed to the processing routine. Line 4 creates a

new large scale destination image; the image pointer d_image points to the

new image. Line 5 sets the destination image structure member current to a

nonzero integer, to indicate that the new destination image is not current,

www.manaraa.com

92

that is, it is not saved on disk. Line 6 places the name of the destination image

taken from the old destination image and places it in the new destination

image. Line 7 allocates the memory for the image pixel data in the new

destination image using the new dimensions, newheight and newwidth. The

new image dimensions are completely up to the programmer; typically, they

are calculated from the input image dimensions. For example, the Fast

Fourier transform routine uses the input image dimensions to calculate the

destination image dimensions as the smallest integer power of two greater

than or equal to the source image dimensions. Line 8 assigns the matrix

pointer to the destination image pixel data to the pointer d_array, allowing

the programmer to reference the pixel in the i-th row and j-th column of the

destination image as d_array[i][j].

For some processing applications, it is useful to allow the user to, while

viewing an image, use the mouse to specify a particular point or region of the

image as input to a processing routine. An example would be allowing the

user to graphically "draw" the boundary of an image region which contains

pure noise and no signal; the image data in this region may be used by the

processing routine to calculate noise process statistics for use in filtering

noise from the image. Such cases may be handled by using what will be

called HAPPI’s “rubberband utility functions”, so named because they allow

the user to draw a line or box on the computer display which is dynamically

sized according to mouse input from the user. There are several rubberband

utility functions defined in the file "Image_Xl.c." Two of the most commonly

used rubberband routines in HAPPI are RubberBand() and

R ub b e r B a nd L i n e (). The function R ub b e r B a n d() is used to define a

www.manaraa.com

93

rectangular region in an image. Upon invocation, the function is passed

pointers to variables for the image buffer index, row and column position of

the initial corner of rubberband box, and height and width of the box. The

function monitors mouse input until it detects that the user has depressed and

released the left mouse button, whereupon control returns to the calling

routine, and the variables whose addresses (i.e., pointers) were passed to the

function contain the desired information. The function RubberBandLine() is

similar, but passes back, again by using pointers, the coordinates of the

endpoints of the line specified by the user. Upon return from one of the

rubberband functions, the programmer usually needs to search the image

buffer to find the image pointer corresponding to the image index returned

by the function. The reader is referred to the code for extracting arbitrary

image cross-sections and subimages in the function

Img_Analysis_Manager(), found in the file Managers.c, for examples of how

to use the rubberband utility functions and of how to search the image

buffer.

Text may be written to HAPPI's information window using the function

Write!nfoWindow(), and individual lines in the information window may be

cleared using the function ClearlnfoLine(). These functions are both defined

in the file "Info_Xl.c". The programmer may use the information window to

communicate a variety of information to the user, including: detailed prompts

for input, displaying the current processing status of compute-intensive

routines with long execution limes, and issuing error messages for incorrect

algorithm input parameters. Examples of the use of these routines may be

found throughout HAPPI's code, especially in the menu managers for the

www.manaraa.com

94

various image processing classes, found in the file Managers.c, and in the

image processing routines themselves, which are found in the file

IProutines.c.

4.9 User Interface Window Types and Management Tools

As fetching of input parameters is almost always done outside of

HAPPI's image processing algorithms, a separate parameter fetching routine

must be written for each image processing routine. The parameter fetching

routine uses several types of windows to present a graphical interface to the

user. This section discusses the types of windows typically used by the

parameter fetching routines, and the utilities in HAPPI that create, alter, and

destroy these windows.

The first thing done by the parameter fetching routine is to display the

current default values (stored in the global parameter block) of the algorithm

input parameters. These values are displayed in what is called a "menu

window" in HAPPI. Menu windows display a list of strings, and have an

identifiable space, or "sub-window", (with its own border) for each string in

the list. HAPPI's main menu and submenus are all drawn using menu

windows. Two routines which create and destroy menu windows are called

CreateAndDisplayMenu() and RemoveMenu(), respectively; these routines are

defined in the file "Menu_Xl.c".

The parameter fetching routine uses what is called a "value window" in

HAPPI to read user input of integer and floating-point input parameters. A

value window is divided into seven sub-windows; a title sub-window

www.manaraa.com

95

displaying the name of the parameter to be altered, a sub-window displaying

the current value of an input parameter, a sub-window displaying the word

"OK", and four sub-windows containing graphical "arrows". If the user clicks

the left mouse button on one of the arrows, the parameter value currently

displayed will be incremented or decremented by either a large or small

amount, depending on which arrow the user clicks the mouse. The size of the

large and small parameter increments and decrements is determined by the

programmer. When the user is satisfied with the value of the input

parameter, he/she clicks the left mouse button on "OK", the routine which

created the value window destroys the window and exits, and the parameter

entered by the user is placed in the global parameter block IPparam. Two

routines used to create value windows for fetching integer and floating-point

input parameters are GetValueFromWindow() and

GetFloatValueFromWindow(), respectively. These routines are defined in the

file "Value_Xl.c".

As mentioned previously in Section 4.8, the programmer may use the

Information Window at the bottom of HAPPI's screen to display prompts and

useful information to the user. The information window may be accessed by

the programmer from anywhere in HAPPI's code (using the functions

WritelnfoWindow() and ClearlnfoLine()). Thus, the programmer may also

make use of the information window within the parameter fetching routine

to, for example, notify the user of input parameter constraint violations.

For image processing algorithms that employ an entire two-

dimensional array as an input parameter (e.g., convolution kernels, matched

filter templates, and morphological structuring elements), HAPPI has

www.manaraa.com

96

available to the programmer what are called "mask value windows". These

windows allow the user to individually specify the elements of a two

dimensional array for use in such algorithms. The routine

DisplayMaskMatrixMenu(), defined in the file "Menu_Xl.c", creates and

displays a mask value window of programmer-defined size. Three higher-

level routines, user_binmask(), user_cmask(), and user_grmask(), make use

of DisplayMaskMatrixMenu() to fetch masks of different data types from the

user. These three routines are defined in the file "IPparams.c".

One of the most important routines in HAPPI is the function

ActionMonitor(), which is defined in the file "User_Xl.c". ActionMonitor() is

used extensively throughout HAPPI to monitor the user’s mouse and keyboard

activity. ActionMonitor() is called with three pointer arguments which point

to "index", "action" and "value" integer variables. The function does not

return until the user enters a mouse button click or presses a key on the

keyboard. Upon return from ActionM o nitor(), the index variable contains

the index of the window where the mouse cursor was located when the input

was entered, the action variable contains the type of action detected (mouse

button click or keyboard input), and the value variable contains the value of

the input (which mouse button was pressed or which key on the keyboard

was pressed). Documentation for this routine may be found in the "User"

section of the HAPPI Technical Manual, Volume 4. Examples of the use of

ActionMonitor() will be given in example code in later sections.

www.manaraa.com

97

4.10 Writing the Parameter Fetching Routine

This section will discuss the issues involved in writing a parameter

fetching routine for HAPPI, and will examine example code line-by-line. All

of HAPPI's parameter fetching routines are similar in structure; the

programmer may usually (and is, in fact, encouraged to) simply copy and

modify an existing routine, or the code template to be discussed below, to cut

down on the necessary typing.

All parameter fetching routines perform the following tasks: read the

current default input parameters from the global parameter block, create and

display two menu windows showing the names and current default values,

respectively, of the parameters, enter a while loop in which ActionMonitor()

is called to retrieve user mouse and/or keyboard input and in which the

user's input is processed using a switch construct whose various cases each

handle the modification of a single algorithm input parameter, remove

windows created by the parameter fetching routine when the user is done

modifying parameters, and exit.

Figure 4.8 is a general code template for parameter fetching routines

for HAPPI. A variation of this template, ready for editing, may be found in

the file "paramtempl.c".

1 #undef NUMPARAMS
2 #define NUMPARAMS (an integer goes here)
3 void routine_Param()

4
5
6
7

char

nt

valuefNUMPARAMS + 1][151,
*param_values[NUMPARAMS + 3];
m_width,
m_height,

Figure 4.8. General code template for parameter fetching routine

www.manaraa.com

98

g
9
10
1 1
1 2
1 3
14

m_indexl,
m_index2,
a_index,
a_action,
a_value,
done;

static char *param_names[] = {
"Routine Name",
"1st Parameter Name",
"2nd Parameter Name",

1 5

1 6

1 7
1 8
20

2 1
22
23
24

25
26

27

28

29

30

3 1
32
33
34

"n-th Parameter Name",
it ti | ,

Create AndDisplayMenu(param_names,(NUMP ARAMS + 1) ,5 00,5 00,
&m_width,&m_height,&m_index 1, V);

param_values[0] = "Parameters";
/* Code to initialize other elements of param_values[] */
param_values[NUMPARAMS + 1] = "OK";
param_values[NUMPARAMS + 2] = "";
Create AndDi splay Menu(param_v alues, (NUMP ARAMS + 2),5 00,5 00,

&m_width,&m_height,&m_index2, V);
done = 0;
while(done == 0) {

ActionMonitor(&a_index,&a_action,&a_value);
if(((a_index == m_indexl)ll(a_index == m_index2))&&

(a_action == 1))
switch(a_value) {
case 1:
/* Code to modify member of global parameter block */
/* This part is up to the programmer's requirements */
RemoveMenu(m_index2);
/* Code to modify param_values goes here */
Create AndDisplayMenu(param_values,(NUMP ARAMS + 2)

500,500,&m_width,&m_height,&m_index2, V);
break;
/* Code to handle other cases */
case NUMPARAMS:
/* Code to handle case for last parameter */
case (NUMPARAMS + 1):

done = 1;
break;

default: break;

RemoveMenu(m_indexl);
RemoveMenu(m_index2);

Figure 4.8. (cont’d)

www.manaraa.com

99

We now discuss the code template of Figure 4.8 line by line. Line 1

nullifies any previous definition of the string NUMPARAMS; this allows us to

redefine NUMPARAMS in line 2. In line 2, the programmer should define the

string NUMPARAMS to be the (integer) number of algorithm parameters to be

manipulated by the parameter fetching routine. Line 3 is the routine's

function header; all of HAPPI's parameter fetching routines are declared as

type void, and are not passed any arguments. The programmer should give

the routine an appropriate name in line 3; all of HAPPI's parameter fetching

routine names are postfixed with "_Param" by convention. Lines 4 through

13 declare variables needed for every parameter fetching routine, and will

not need to be altered by the programmer. The declaration of the array of

string pointers p ar am _name s [] in line 14 must be modified for each

parameter fetching routine. The first string, "Routine Name”, should be

changed to the name of the image processing routine for which the

parameter fetching routine is being written. The remaining strings should

be descriptive but concise names for the image processing algorithm

parameters. The last string in the declaration of param_names[] should be a

null string as shown; this is necessary because of an idiosyncrasy of the

routine HAPPI uses to create and display menu windows. The number of

string pointers in the array param_names[] should thus be two more than the

number of algorithm parameters due to the string pointer for the routine

name at the beginning of the array and the null string pointer at the end of

the array. Line 15 creates and displays a menu window near the middle of the

computer display using the strings pointed to by the array param_names[J;

this line does not need to be altered by the programmer. (The programmer is

www.manaraa.com

100

referred to the HAPPI Technical Manual, Volume 4, "Menu" section for

documentation on the function call of line 15.) Line 16 begins a section of

code which builds the elements of the array of string pointers

param_valu.es[]. The first element of this array is assigned a pointer to the

string "Parameters" in all of HAPPI's parameter fetching routines by

convention. Lines 17 and 18 assign pointers to the strings "OK" and "" (a null

string) to the second-to-last and last elements of param_values[/; this is done

in all parameter fetching routines. Between lines 16 and 17, the programmer

will need to insert code to initialize the remaining elements of the array

param valuesf] using the values currently in the global parameter block; this

code will be specific to each parameter fetching routine. Many image

processing algorithm parameters will be floating-point or integer numbers.

The following two lines of example code will print a float-valued parameter

from the global parameter block into a string and assign a pointer to the

string to one of the elements of the array param_values[J:

sprintf(value[l],"%f",IPparam.snratio);
param_values[l] = value[l];

The first line prints the string representation of the floating-point

parameter IPparam.snratio from the global parameter block into row 1 of the

character array value[][]. The second line assigns a pointer to row 1 in

value[][] to element 1 of the array of string pointers param_values[]. The

code to handle an integer parameter would be similar; we would simply

replace the floating-point ("%f") conversion specification in the sprintfO

call with an integer ("%d") conversion specification. Using an incorrect

www.manaraa.com

101

conversion specification in the sprintfO call is a common source of errors in

the displayed parameter values, especially when existing code is being copied

and modified. Some image processing algorithm input parameters may be one

of a finite and small set of choices. For example, for an algorithm that

processes an image by operating on individual rows or columns of the image

(rather than on, say, small two-dimensional neighborhoods of the image), the

programmer should give the user a choice of whether to process the image

along the rows or the columns. In such cases, the convention adopted in

HAPPI has been to represent such choices in the global parameter block

using a char- or short-valued structure member. For example, the character¬

valued structure member fit_type in the global parameter block takes on the

value 'c' if the image processing routines that use the fit_type parameter are

to process along the columns of an image; if processing is to be done along

the rows, fit type is set to the value 'r'. The example code of Figure 4.9

illustrates how the programmer might assign values to array elements of

param_values[] based on the value of a character-type member of the global

if(IPparam.fit_type == 'c')
param_values[2] = "Column";

else if(IPparam.fit_type == 'r')
param_values[2] = "Row";

else /* Parameter fit_type has an invalid value; this should not happen */
(Code to handle this anomalous situation}

Figure 4.9. Assigning value to parameter value array from small set of choices

parameter block (code to work with short integer-type members would be

very similar). Note that if there were more than two possible values of a non-

numerical algorithm parameter, the above code fragment could be extended

www.manaraa.com

102

in a straightforward manner to handle each possible value. This could be

done by adding more if statements to the list in the above code fragment or by

using a switch construct. The programmer is referred to the parameter

fetching routines in the file IPparams.c for further examples of how the

array of parameter value strings is built. The function call in line 20 creates

and displays a menu window containing the (character representation of the)

values currently in the global parameter block. This menu window is placed

next to the first menu window created in line 15, with the parameter values in

the second menu window next to their names in the first menu window. Line

20 does not need to be altered by the programmer. Line 21 initializes the

variable done\ the while statement of line 22 uses the value ot done to

determine when to exit the while loop which begins on line 22 and ends with

the right curly brace following line 34. Line 23 calls ActionMonitor(), which

was discussed previously in Section 4.9; control does not return to the

parameter fetching routine until the user enters some type of mouse or

keyboard input. Line 24 tests the values returned (via pointers) from

ActionMonitor() to determine if the user has clicked the mouse on cither the

menu window containing the parameter names or the menu window

containing the parameter values. If the user has not entered valid input (a

mouse click on either of these windows), the code following the if statement

of line 24 is not executed, the value of done remains unchanged, and the

while loop again executes ActionMonitor(), waiting for the user to enter valid

input. If the user has entered valid input, then line 25 is executed, switching

on the the variable a_value. When the user enters valid input, a_value will

contain the number of the sub-window of the menu window on which the

www.manaraa.com

103

mouse was clicked. Thus, if the user clicks the mouse on the uppermost sub¬

window on the menu window displaying the current parameter values,

a value will equal zero. As the zeroth sub-window of the parameter name and

parameter value menu windows contain the name of the image processing

algorithm and the word "Parameters", respectively, we do not wish to perform

any action if the user clicks on either of these sub-windows. Hence, the list

of case labels beginning in line 26 starts with case 1\ the code following case 1

will be executed if the user clicks on either the name or the value of the first

parameter. The code for each case in the switch construct will be specific to

the algorithm parameter handled by that case. The following line of code is

an example of how the value of a float-valued member of the global

parameter block is altered:

IPparam.snratio = GetFloat Value From Window(" Signal/Noise ",500,300,
IPparam.snratio,0.0,10000.0,0.1,1.0);

The return type of G etF loatV alueF romW indow() is float. This line of code

places the returned floating-point value in the member snratio of the global

parameter block IPparam. As mentioned previously in Section 4.9, the

function GetFloatValueFromWindow() creates and displays a "value window"

which allows the user to alter the value of an algorithm parameter using

mouse clicks. The argument list to this function will need to be altered by the

programmer. Argument number zero (in C, function arguments are

numbered starting from zero) is a string which is placed in the title sub¬

window of the value window; often, it is useful to indicate in this string any

constraints on the algorithm parameter being altered. For example, if the

www.manaraa.com

104

algorithm parameter must be greater than zero, the programmer might pass

the string "Signal/Noise (>0)" to GetFloatValueFromWindow() as argument

zero. The next two arguments control the position on the computer display

where the value window will appear; these need not be altered by the

programmer in most cases. Argument number 3 should be the member of the

global parameter block which is to be altered. The function

GetFloatValueFromWindow(). uses this argument to read the current value of

the global parameter block member at the time G etF loatValueF romW indow()

is called. (The global parameter block member is altered only after a new

value is returned by GetF loatValueF romW indow().) Arguments number 4 and

5 are the lower and upper limits, respectively, on the value to be returned.

The function GetF loatValueF romWindow() enforces these limits by lorcing

the returned value to be the lower (upper) limit value if the user attempts to

enter a value below (above) the lower (upper) limit value. Arguments

number 6 and 7 are the small and large increments by which the value

displayed in the value window is changed when the user clicks on the small

and large arrows, respectively, in the value window. The value window

created by the above call to GetF loatValueF romWindowi) will thus not allow

the user to enter values below zero or above ten thousand, and will increment

(decrement) the value displayed in the value window by 0.1 when the user

clicks on the small up (down) arrow, and will increment (decrement) the

value displayed in the value window by 1.0 when the user clicks on the large

up (down) arrow. The related function G e tValue F romW indow() creates and

displays a value window which returns an integer. Note that the arguments

to this function for lower and upper parameter limits and small and large

www.manaraa.com

105

parameter increments should naturally be integers; errors could result if

floating-point numbers were passed. If the algorithm parameter to be altered

is not a number, but rather a character or short integer representing one of

a small set of choices, the code to alter the parameter may simply cycle the

parameter through its possible values as the user repeatedly clicks the mouse

on the parameter. Example code to cycle through the possible values for a

global parameter block member called dummy value whose possible values are

'a', ’b\ and 'c' might look like the following:

if(IPparam.dummyvalue == 'a')
IPparam.dummyvalue = 'b';

else if(IPparam.dummyvalue == 'b')
IPparam.dummyvalue = ’c';

else if(IPparam.dummyvalue == 'c')
IPparam.dummyvalue = 'a';

else /* IPparam.dummyvalue has incorrect value; this should not happen. */

Alternatively, we could do the same thing with a switch construct:

switch(IPparam. dummy value)

(
case ’a' : IPparam.dummyvalue = 'b';

break;
case 'b' : IPparam.dummyvalue = 'c';

break;
case ’c’ : IPparam.dummyvalue = ’a';

break;
default : /* IPparam.dummyvalue has an incorrect value */

/* This should not happen. */
break;

}

The programmer is again referred to the various parameter fetching routines

in the file IPparams.c for further examples of code to modify members of the

global parameter block. Line 27 of the code template of Figure 4.8 removes

www.manaraa.com

106

the menu window containing the parameter values. The code following line 27

will be specific to the particular parameter being modified, and will be

identical to that used to assign the initial values to the elements of

param_values[] in the code between lines 16 and 17. Line 28 is identical to line

20, and simply redraws the menu window displaying the newly modified array

param_values[]. Line 29 is an all-important break statement, which passes

program control to the end of the switch construct; without it, program

control simply passes to the code following the next case label, a situation we

wish to avoid. Lines 28 and 29 do not need to be altered by the programmer.

Following line 29, the programmer should insert as many case labels as

necessary to handle alteration of all the of algorithm parameters. Line 30

begins the code to handle the last parameter. All code past line 31, inclusive, is

common to all parameter fetching routines and does not need to be altered by

the programmer. The programmer should use the information window where

necessary to inform the user of any special parameter constraint violations

(besides the minimum & maximum value constraints enforced by

GetValueFromWindow() and GetFloatValueFromWindow()). Policy for handling

such violations is up to the programmer. Example code to force an integer

parameter to be odd is shown in Figure 4.10. Line 1 modifies the parameter

block according to the user's input. The user may enter any integer between

the upper and lower limits, inclusive, passed to GetValueFromWindow(). Line 2

tests the integer returned by G e tV a l u e F r o mW i nd o w () and placed in

IPparam.mask_size to see if it is even. If the integer in IPparam.mask_size is

even, lines 3 and 4 are executed, informing the user of the parameter

constraint violation and decrementing the value of IPparam.mask_size,

www.manaraa.com

107

respectively. The arguments to WritelnfoWindow() are as follows: Argument

zero is the window index of the information window; this is a global variable,

declared in Globals.h, and does not need to be changed by the programmer.

Argument number 1 is the string to be written in the information window.

1 IPparam.mask_size = GetValueFromWindow(MMask Size (odd)",500,300,
IPparam.mask_size,3,511,1,10);

2 if((IPparam.mask_size % 2) == 0) /* If entered mask size was even */
{

3 WriteInfoWindow(instr_window_index,MMask size must be odd;
decrementingM,,c’,2);

4 IPparam.mask_size -= 1;
}

5 RemoveMenu(m_index2);
6 sprintf(value[l],"%d",IPparam.mask_size);
7 param_values[l] = values[l];
8 CreateAndDisplayMenu(param_values,(NUMPARAMS + 2),5 00,500,&m_ width,

&m_height,&m_index2, V);
9 break;

Figure 4.10. Example code for enforcing constraints on parameters

Argument number 2 specifies whether the string is to be written right-

justified, left-justified, or centered in the information window by the values

Y,T, and 'c\ respectively. Argument number 3 specifies the line number

(line 1, 2, or 3) in the information window to which the string passed as the

argument number 1 will be written. Lines 5 through 9 make up the remainder

of the code that would be included is a block of code to modify a member of the

global parameter block.

The parameter fetching routine should be placed in one of the files

IPtest.c, IPtest2.c, or IPtest3.c along with the new image processing algorithm

www.manaraa.com

108

it has been written for. With the algorithm and parameter fetching routine

written according to the code templates presented in this document, the

programmer need only make modifications to four of HAPPI's source code files

and recompile the source code to integrate his/her routine into HAPPI. The

next section details these final steps.

4.11 Putting it All Together

This section details the final steps necessary to integrate an image

processing routine into HAPPI. Here, we describe changes the programmer

will need to make to HAPPI's source code files to cause HAPPI to display an

image processing menu selection for the new routine, prompt the user for the

input image(s) when the new routine is selected, and execute the parameter

fetching routine and algorithm calls via the Image Processing Manager. If

the programmer is not only adding a new routine but creating a new class of

routines, then the changes necessary for each file will be more extensive than

if a new routine is being added to an existing class of routines. For each source

code file discussed in this section, we will first discuss the changes necessary

to add a new routine to HAPPI under an existing class, then address changes

necessary to add a new class of routines to HAPPI .

4.11.1 Editing Menus.h

The first file the programmer needs to edit is Menus.h. This file

contains the declarations and initializations for all of HAPPI's static menus, as

www.manaraa.com

109

well as preprocessor macros defining attributes of the static menus. If the

programmer is adding an algorithm under an existing class, the following

changes should be made to this file:

1) Update the preprocessor macro which defines the size of the menu for the

image processing class under which the new algorithm is being added;

2) Add a string containing the name of the new routine to the static

declaration and initialization of the menu item text for the image

processing class.

The preprocessor macros defining the menu sizes for each image processing

class are of the form:

#define c/assnameMENUSIZE size

where c las s name is the name of an image processing class (in all capital

letters by convention) and size is the (integer) number of items (including the

menu title and the "Exit" menu item) in the menu for that class. The

programmer would thus increment size by the number of new routines being

added to the menu for class classname. The declaration and initialization of

menu item text for the trend removal class or processing routines is shown in

the code listing of Figure 4.11, which is excerpted from Menus.h. Beginning

in line 4, TRENDREMOVALMENU[] is declared and initialized as a static array of

pointers to the strings in lines 5 through 10. To add a new image processing

routine to the trend removal menu shown above, the programmer would thus

www.manaraa.com

no

change the menu size from "5" to "6" in line 1, and would insert a string

containing the title of the new routine into the list beginning in line 5. The

routine which creates and displays menu windows places the string pointed to

by the first element of TRENDREMOVALMENU[] in the first subwindow of the

1 #define TRENDREMOVALMENUSIZE 5
2 #define TRENDREMOVALMENUX ((Main_Menu_Width/7)+2)
3 #define TRENDREMOV ALMENU Y (5*(Main_Menu_Height/2) + MAINMENUY)
4 static char TRENDREMOV ALMENU [] =

{

5 "Trend Removal",
6 "Row or Column Fit",
7 "Surface Fit",
8 "Widowed RC Fit",
9 "Exit",
10

Figure 4.11. Example of menu text item declaration

menu window, the second string in the second subwindow, and so forth. The

position of the new routine in the list is up to the programmer; however, the

new routine should be positioned so as to "make sense" to the user. If the new

routine is related to other existing routines, it should be grouped with them

rather than being simply placed at the bottom of the list. The programmer

should make note of where the new routine is inserted in the list, as

subsequent modifications to other files will depend on this.

If the programmer is creating a new image processing class, the

changes that must be made to Menus.h are as follows:

www.manaraa.com

3) Update the preprocessor macro which defines the menu size for the Image

Processing menu;

4) Add a string containing the name of the new class to the static declaration

and initialization of the Image Processing menu, IMG_PROCESS_MENU;

5) Declare and initialize a new menu for the new class and define menu

attributes for the new menu.

Steps 3 and 4 above are similar to steps 1 and 2; the programmer simply edits a

different preprocessor control line and initialization list. Step 5 may be done

using the menus for other classes as examples; all menu declarations are

similar in form. The new menu should have a size, x location, and y location

attribute defined with preprocessor control lines, and should have a

descriptive, easily remembered name. The x and y location attributes of the

trend removal menu are defined in lines 2 and 3, respectively, of Figure 4.11.

These attributes are used to determine where the menu will be drawn on the

screen, and are up to the programmer. If the new menu is to be displayed

directly to the right of the Image Processing submenu, then the x location

attribute should be set to that of the trend removal menu example of Figure

4.11, namely ((Main_Menu_Width)/7 + 2). (Note: the variable

Main_Menu_Width is a global variable declared in the file Globals.h.) By

convention, the menus for each image processing class are drawn with their

menu titles directly to the right of the name of the class in the Image

Processing menu. Thus, if we let num be the (integer) position of an image

processing class in the Image Processing menu, then the y location attribute

should be set to (((num + 2)*(Main_Menu_Height)/2) + MAINMENUY) to

www.manaraa.com

adhere to this convention. (Note that the top, or zeroth, position in any menu

window is occupied by the menu's title.) The static declaration and

initialization of the menu text items for the new class will be similar to the

ones for the existing classes. The first, or zeroth, string in the initialization is

always the menu title; this is followed by as many strings as necessary to

denote the routines to be accessed via the menu, with these strings followed by

an "Exit" string and a null string.

4.11.2 Editing Globals.h

The next file to edit is Globals.h. This file includes declarations of global

variables that are used throughout HAPPI, data type definitions for the image

buffer and the global parameter block, and the enumeration lists for the class

and subclass variables passed to /P_manager(). If the programmer is adding

an algorithm under an existing class, the following changes should be made to

this file:

1) Add any new parameters needed by the new processing routine to the data

type definition of the global parameter block;

2) Add an enumerator for the new routine to the enumeration list of the

IP_SUBCLASS defined type under the applicable class of processing

routines.

Many algorithm parameters function similarly in HAPPI's various image

processing routines; for example, all convolution-based routines take a

www.manaraa.com

convolution mask size as a parameter. The practice adopted in HAPPI has been

to share a single member of the global parameter block between processing

routines that make similar use of that member. Hence, the mask_size member

of IPparam is used by all of HAPPI's convolution-based processing routines.

Before the programmer adds a new member to the global parameter block data

type definition, he/she should first check to see if appropriate members have

already been defined. The data type definition of the global parameter block

begins with the line "struct param {" in Globals.h. Following this line are the

declarations for the individual structure members. The programmer is

referred to the calls to the individual image processing routines (located in the

file IPmanager.c to be discussed in greater detail below) to see which members

of IPparam are used by a particular processing routine, and which members

are shared between processing routines. If it is deemed necessary to create a

new member in the global parameter block, the programmer simply adds a

declaration of the appropriate type for the new member to the structure

declaration.

To find the enumeration list for the IP_SUBCLASS defined data type, the

programmer should search Globals.h for the string "IP_SUBCLASS". Integer

values are explicitly assigned to the enumerators in this list according to the

following scheme: Within each image processing class, the enumerators for

the subclasses of that class are assigned values according to the menu position

of the routine corresponding to the enumerator. The scheme is illustrated for

the "trend removal" class of processing routines as follows: The menu for the

trend removal class contains (at this writing) three routines: "Row or Column

Fit", "Surface Fit", and "Windowed RC Fit", which appear in that order. The

www.manaraa.com

114

enumerators declared for these routines in Globals.h are "refits", "surrje", and

"wls2dsur", respectively (Note: The names of these enumerators were derived

from the original names of the processing routines. It is not necessary for

them to resemble the menu text, as they are not seen by the user.). The

integer assignments for the enumerators in the trend removal class are thus

rcfits=l, surrje=2, and wls2dsur=3. The enumerators for the subclasses of each

processing class are assigned values in a like manner. Hence, the enumerator

corresponding to the first processing routine in the menu for any given class

is assigned a value of 1, the enumerator for the second processing routine in

the menu for any given class is assigned a value of 2,and so forth. When the

programmer modifies the enumerator list for the IP_SUBCLASS defined type,

he/she should thus recall the menu position of the new routine being added

(this position is established when the file Menus.h is edited), and modify the

assigned values in the enumerator list as appropriate; if the menu text for the

new routine was inserted before the end of the menu when Menus.h was

edited, then the enumerator for the new routine should be inserted at the

corresponding point in the enumerator list within the group of enumerators

for the applicable processing class. The new enumerator should be assigned

the value that was previously assigned to the enumerator it is displacing, and

the assigned values for all subsequent enumerators within the applicable

processing class should all be incremented to reflect that they have been

"bumped down" one position on the menu.

If the programmer is creating a new image processing class, the

changes that must be made to Globals.h are as follows:

www.manaraa.com

3) Add any necessary declarations to the global parameter block, as in step 1

above;

4) Declare an external integer to hold the menu index of the menu for the new

processing class;

5) Add an enumerator for the new processing class to the enumeration list of

the IP_CLASS defined type.

6) Insert a group of enumerators for the new class into the enumerator list of

the IP_SUBCLASS defined data type, following the previously discussed

scheme for explicitly assigning values to the enumerators.

A global variable for each of HAPPI's static menus is declared in Globals.h with

a declaration of the form:

extern int menuname_Menu;

where menuname is a descriptive name for the menu, with a capital first letter

by convention. The programmer should thus add to Globals.h a declaration of

the above form with menuname being descriptive of the new class of

processing routines. This new external integer will be needed in a subsequent

step when a new menu manager is created to handle the new processing class.

To find the enumeration list for the IP_CLASS defined data type, the

programmer should search Globals.h for the string "IP_CLASS". Integer

values are explicitly assigned to the enumerators in this list according to a

scheme similar to that for the IP_SUBCLASS defined data type: The values are

assigned to the enumerators according to the menu position of the

www.manaraa.com

116

corresponding processing class in the Image Processing menu. Thus, (at this

writing), the enumerator noise _Jilter, which corresponds to the first

processing class in the Image Processing menu, "Noise Filters", is assigned a

value of 1. When the programmer modifies the enumerator list for the

IP_CLASS defined type, he/she should thus recall the menu position of the new

class being added (this position is established when the file Menus.h is edited),

and modify the assigned values in the enumerator list as appropriate.

4.11.3 Editing IPmanager.c

The next file to edit is IPmanager.c. This file contains the functions

IP_manager(), GetParams(), CallIP(), and the parameter fetching and image

processing support routines which are called by GetParams() and CallIP(),

respectively. Recall that the parameter fetching support routines call the

actual parameter fetching routines, and the image processing support

routines call the actual image processing routines (the reader is referred to

Figure 4.3 in Section 4.3 for an illustration of the flow of control between these

functions). If the programmer is adding a processing routine under an

existing class, the following changes should be made to this file:

1) Edit the parameter fetching support routine for the applicable processing

class, adding to the support routine's switch construct a case label and

accompanying code to call the parameter fetching routine for the new

algorithm;

www.manaraa.com

117

2) Edit the image processing support routine for the applicable processing

class, adding to the support routine's switch construct a case label and

accompanying code to call the new image processing routine.

As may be recalled from the discussion of Section 4.3, IP_manager() is passed a

class and subclass, which together determine the image processing routine to

be executed. IP_manager() then call GetParams() and CallIP() in turn, passing

the class and subclass on to both of these routines. GetParams() and CallIP()

both "switch" on the image processing class passed to them and call a support

routine for that particular class, passing the subclass to the support routine.

The support routines in turn "switch" on the subclass passed to them and call

the specific parameter fetching or image processing algorithm determined by

the subclass. The parameter fetching support routines have names prefixed

with "P_", and the image processing support routines have names prefixed

with "C_", by convention. Hence the parameter fetching and image

processing support routines for the trend removal class of image processing

routines are called "P_Trend()" and "C_Trend()", respectively. The entire

source code of P _Tre nd() is listed in Figure 4.12. (Note: The string

BAD IMG _P ROC ESS _SU BC LA is defined with a preprocessor macro in the file

"errors.h" as the error code to be returned if the subclass passed to a support

routine is not defined in the enumerator list for the defined type

IP_SUBCLASS).

Thus, if he/she were adding a new processing routine under the trend

removal class of processing routines, the programmer would simply add a case

label and accompanying code for the new routine to the switch construct

www.manaraa.com

118

beginning in line 5 of the listing of Figure 4.12. The expression following the

word "case" in the case label should be equal to the enumerator for the

subclass of the new routine (this is the enumerator added to the enumerator

list for the IP_SUBCLASS defined type when the file Globals.h is edited). The

1 int P_Trend(subclass)
2 IP_SUBCLASS subclass;

(
3 int error;
4 error = 1;
5 switch(subclass)

{
6 case refits :
7
8 case surrje:
9
1 0 case wls2dsur
1 1
1 2 default :
1 3

}
14 return error;

Rcfit_Param();
break;
Surf_Param();
break;
Wls2dsur_ Param();
break;
error = BAD_IMG_PROCESS_SUBCLA;
break;

Figure 4.12. Source code for support routine P_Trend()

statements following the new case label are simply a call to the parameter

fetching routine and a break statement. If we have written our parameter

fetching routine to return an error code, we should assign the returned value

to the variable error (declared in line 4 of the listing in Figure 4.12). The

error code will then be passed back to the manager routine which called

lP_manager() and handled with a generic error display function. Thus, the

new lines of code added to the switch construct would be of the form:

www.manaraa.com

case newroutine : error = Newroutine_Param();
break;

The modifications to the image processing support routine are similar to

those for the parameter fetching support routine. A case label, with

accompanying code to call the image processing routine, is added to the switch

construct found in the image processing support routine. Each image

processing support routine contains a single switch construct with case labels

identical to those in the switch construct of the corresponding parameter

fetching support routines. The new case label is thus identical to the one

added to the switch construct in the parameter fetching support routine. The

block of code following the case label consists (for the vast majority of

processing routines) of the call to the processing routine, a line of code used to

build an entry in the output image's history structure, and a break statement.

If the processing routine returns any error codes, the returned value should

be assigned to the variable error. (All of the support routines use this variable

name for returned error codes by convention.) The argument list in the call

to the processing routine consists (with the exception of the argument(s) for

the destination image pointer(s)) of the appropriate members of the global

parameter block IPparam. The destination image pointer(s) passed to the

processing routine is (are) the temporary image pointer(s) temp _img (and

temp_img2, if it is needed). The character array history, declared in each of

the image processing support routines, is used to build a string describing the

processing that has just been performed on an image. This string is saved in

the history structure of the destination image upon successful completion of a

processing routine. Example code to be added to the switch construct of the

www.manaraa.com

120

image processing support routine might look that in Figure 4.13. In line 1, we

have the case label and function call to the new routine, with the argument

list as described above and the return value assigned to the variable error.

1 case newroutine : error = Newroutine(IPparam.s_imagel,temp_img,
IPparam.int_element l,IPparam.float_element 1,
IPparam.int_element2);

2 sprintf(history,"newroutine(image_var,image_var,
%d,%f,%d);",IPparam.int_elementl,
IPparam.float_elementl ,IPparam.int_element2);

3 break;

Figure 4.13. Example code to add to image processing support routine

The sprintfO call in line 2 bears some further explanation. Argument number

1 to sprintfO is the "format string". The format string begins with a

descriptive string for the new routine (this may be identical to the new

routine's name, but does not have to be), followed by a left parenthesis,

followed by a comma-separated list whose members are determined by the

argument list for the new routine as follows: For every argument to the new

routine of type IMAGE, the element of the comma-separated list is just the

string "image_var" (note that the "image_var" strings themselves are not

enclosed in double quotes in the sprintfO call). For every non-image

argument to the new routine, the corresponding element of the comma-

separated list is a conversion specification of the appropriate type (%f for

float-valued arguments, %d for integer arguments, and so forth). The comma-

separated list is terminated with a right parenthesis and a semicolon. The

remaining arguments to the sprintfO call are just the appropriate members of

www.manaraa.com

121

the global parameter block, and are identical to the corresponding arguments

in the call to the processing routine in line 1. The sprintfO call of line 2 is

truly necessary only if the programmer is incorporating the new processing

routine into HAPPI's built-in macro language. It will not cause problems if the

programmer does not add the new routine to the macro language, but HAPPI's

"convert history to macro" function is the only function that requires the use

of the sprintfO call of line 2. The rigid form of the format string in the

sprintfO call is necessary for HAPPI's macro functions to properly interpret

each entry in an image's history structure when converting the history

structure to a macro. Instructions on how to add a new routine to the macro

language in addition to adding it to the interactive user interface are beyond

the scope of this document. However, once a new routine has been integrated

into HAPPI, it may be added to the macro language by editing only one file,

”macro_calls.c". Brief instructions on what changes need to be made are found

in comments in this file; the changes involve mostly copying and modifying

existing code, and the skilled programmer should be able to incorporate new

processing routines into the macro language easily.

Occasionally, certain processing routines may require additional "set¬

up" or "clean-up" code beyond the three lines given in Figure 4.13. The

programmer is referred to the support routines C_Trend() and C_Flaw() in

IPmanager.c for examples of such situations and how they are handled. In

particular, these routines contain examples of the creation of a second

destination image, temp_img2, for processing routines which produce two

output images. (Recall from Section 4.3 that temp_img is created within

www.manaraa.com

122

CallIP(), and temp_img2 is created within the image processing support

routines only where needed.)

If the programmer is creating a new image processing class, the

changes that must be made to IPmanager.c are as follows:

3) Create a new parameter fetching support routine for the new class; this may

be most easily done by copying and modifying an existing parameter

fetching support routine;

4) Edit the function GetParams(), adding to this function's switch construct a

case label with accompanying code to call the parameter fetching support

routine for the new processing class;

5) Create a new image processing support routine for the new class, again by

copying and modifying an existing image processing support routine.

6) Edit the function CallIP(), adding to this function's switch construct a case

label with accompanying code to call the image processing support routine

for the new processing class.

As both the parameter fetching and image processing support routines are all

very simple and similar, performing steps 3 and 5 above is very

straightforward. In creating the support routines, the programmer should

refer to Globals.h to assure that the case labels used in the support routines'

switch constructs exactly match the enumerators of the enumerator list for

the IP_SUBCLASS defined type. Both of the new support routines should

declare and return the error variable, and the image processing support

routine should declare the history variable and include calls to the functions

www.manaraa.com

123

copy_history() and append_history() (the calls to these functions may be

copied from existing support routines without modification).

The functions GetParams() and CallIP() both contain a single switch

construct, and the modifications to these files in steps 4 and 6 above are also

very straightforward. The case label added to each function's switch construct

must exactly match the enumerator added for the new processing class in the

enumerator list for the IP_CLASS defined type. For GetParams(), the code

following the new case label is just a call to the new parameter fetching

support routine of the form:

error = P_Newclass(subclass);

and a break statement. Note that the subclass passed to GetParams() is passed

on to the parameter fetching support routine. For CallIP(), the code following

the case label is just a call to the new image processing support routine of the

form:

error = C_Newclass(subclass);

and a break statement. Note that the subclass passed to CalllP() is passed on to

the image processing support routine.

www.manaraa.com

124

4.11.4 Editing Managers.c

The final file to edit is Managers.c. This file contains the Image

Processing Menu Manager and all of its subordinate menu managers, as well as

the menu managers for HAPPI's "Images", "Macros", "Special Functions",

"Quit", and "Buffer" main menu items. If the programmer is adding an

algorithm under an existing class, the following changes should be made to

this file:

1) Edit the function /nit_/Pparam(), inserting code to initialize any new

members that were added to the global parameter block IPparam when

Globals.h was edited;

2) To the menu manager function which handles the applicable class of

processing routines (the names of these managers are listed below), add a

case label and accompanying code to the menu manager's switch construct

(this is most easily done by copying and modifying code associated with the

case label for an existing routine);

3) Within the manager modified in step 2, find the preprocessor control line

defining the word EXITVALUE as an integer value, and increment the

integer in this definition by the number of processing routines being

added.

The function /nit IPparam() is called only once, during initialization,

and assigns default values to every member of the global parameter block. If a

member of the global parameter block is not explicitly assigned a value at

www.manaraa.com

125

initialization, the member will contain random memory garbage, and when

the user calls a processing routine which uses that member, that random

garbage will be displayed in the value window created in the parameter

fetching routine. At that point, the user may change the value of the member,

in the usual way, to an appropriate value. However, if he/she does not change

the value of the member, the garbage value stored in that member will be

passed to the processing routine selected by the user. Depending on the extent

to which the selected image processing routine checks its input parameters,

passing garbage to a processing routine could result in unpredictable output.

The purposes of step 1 above are thus to help prevent "incorrect " input

parameters from being passed to processing routines, and to assure that

"correct" and representative default values for all algorithm input parameters

are always presented to the user for every processing algorithm. The code

added to Init_IPparam() will be of the form:

IPparam.mynewparameter = mydefaultvalue;

where my newp ar ameter is the new member added to IPparam by the

programmer, and mydefaultvalue is the value the programmer has chosen,

based on experience with his/her processing routine, as a representative

default value for the parameter. Note that if no new members have been added

to IPparam, this step is not necessary.

To perform step 2 above, the programmer needs to know the names of

the Image Processing Menu Manager's subordinate menu managers for the

various image processing classes; these are (at this writing):

www.manaraa.com

126

Noise_Filters_Manager()
Morphology _Manager()
Trend_Removal_Manager()
Edge _Detection_Manager()
Convolution_Manager2()
Contrast_Enhancement _Manager()
Flaw _D etection _Manager()
Img_Measurement Manager{)
Math_Manager()

Additionally, there are two subordinate menu manager "skeletons" in

Managers.c; these functions currently do nothing but return to their calling

routine, Img_Process_Manager(), once the user selects the "Exit" item on their

menus. The menu manager skeletons are called N ew 1 _M anager () and

N ew2 _M anager (), respectively. The code for N e w 1 _M a na g e r () and

New2_Manager() is not compiled unless the preprocessor control line:

#define EXPAND

is included at the top of Managers.c.

As discussed in Section 4.3, l mg _P r o c e ss _M anager () (the Image

Processing Menu Manager) and all of its subordinate menu managers may be

regarded as a large nested switch construct. The integer expressions that this

switch construct "switch" on are supplied by the function ActionMonitor(),

discussed in Section 4.9. Upon return from ActionM onitor(), the integer¬

valued variable value, whose address is passed to ActionMonitor(), contains the

number of the subwindow of the menu window in which the user has clicked

the left mouse button. (Recall that the uppermost subwindow in a menu

window is numbered zero, not one.) Within Img_Process_Manager(), the value

www.manaraa.com

127

variable used by ActionMonitor() is declared as type IP_CLASS, and the case

labels used in the function's switch construct are just the enumerators for the

IP_CLASS defined type. Thus, in the execution of I mg_P rocess _Manager()'s

switch construct, the integer returned by ActionMonitor() in value is

compared to the enumerators in the enumerator list for the IP_CLASS defined

type. Since the integer values explicitly assigned to these enumerators in

Globals.h are equal to the menu positions of the corresponding image

processing classes in the Image Processing menu, the code associated with the

case label matching the selected image processing class is always executed. A

similar scheme is used within l mg _P roc ess _Manager()' s subordinate menu

managers. The value variable used by Actio nM o nitor() in these menu

managers is declared as type IP_SUBCLASS, and the case labels for the switch

construct in each menu manager are just the group of enumerators from the

IP_SUBCLASS enumerator list for the particular class of routines served by

that menu manager.

Thus, the code modifications of step 2 above proceed as follows: To the

switch construct of the appropriate menu manager, add a case label, with the

expression following the word "case" in the case label equal to the enumerator

for the new routine (this is the enumerator added to the enumerator list for

the IP_SUBCLASS defined type when Globals.h is edited). Then, copy the code

associated with an existing case label and place it directly after the new case

label, and modify the copied code to suit the new routine. The code copied in

this step, for processing routines which take only one input image, will look

like the example code of Figure 4.14. The code of Figure 4.14 is explained line

by line as follows: Line 1 simply highlights the menu item selected by the

www.manaraa.com

128

user. The programmer need not change line 1, as the variable value, returned

by ActionMonitor() and passed to HighLightItem(), determines which item is

highlighted. The function get_imageJ"rom_user() called in line 2 has a

case
1
2

3

4
5
6
7
8

9

mynewsubclass :
HighLightItem(menu_index, value);
source = get_image_from_user("Select source image for

MyNewRoutine", "Explanatory Comments",
menu_index,EXITV ALUE,prev_menu,exit_item);

if (source != NULL)
{

lPparam.s_imagel = source;
subclass = mynewsubclass;
IPerror = lP_manager(class,subclass);
if(IPerror <= 0)

system_error(”IP manager: Processing Class:
My New Routine", IPerror);

else
add_image_to_buffer(IPparam.d_imagel);

10 break;

Figure 4.14. Example code associated with case label for new processing routine

return type of IMAGE; this function writes the two strings passed to it as

arguments number 0 and 1 to the information window to prompt the user for

an input image. The two strings in the call to get_image_jrom_user() should

be changed to appropriate prompts by the programmer. The remaining

arguments to this function should be left unchanged. The variable source

(and source2, if it is needed) is declared in each subordinate menu manager as

an IMAGE variable. Thus, the call to get_image_from_user{) returns an image

pointer and assigns its value to the variable source. If the user does not click

the left mouse button on an image window, get_image_from_user() returns a

www.manaraa.com

129

null pointer. Line 3 thus checks to see if the user has in fact clicked the left

mouse button on an image window, and if he/she has done so, passes control

on to line 4; otherwise, control is passed to line 10. In line 4, the image pointer

in source is assigned to the image pointer s image 1 in IPparam. The

programmer need not modify lines 3 or 4. Line 5 assigns the enumerator for

the appropriate subclass to the variable subclass (subclass is declared as an

IP_SUBCLASS-type variable in all of the subordinate menu manager routines);

the programmer should edit line 5 to assign the enumerator for his/her new

routine to subclass. Note that the value assigned to subclass is thus identical to

the expression following the word "case" in the case label preceding line 1.

Line 6 makes a call to the Image Processing manager, assigned the returned

error code to the integer variable IPerror. The variable class passed to

IP_manager() in line 6 is declared as type IP_CLASS in all of the subordinate

menu managers, and is assigned the enumerator for the appropriate class at

the beginning of each subordinate menu manager. Line 7 checks the

returned error code from IP_manager()\ control passes to line 8 if an error

occurred, and to line 9 otherwise. Line 8 calls a generic error-handling

routine which displays the string passed as the argument number 0 to

system_error() in an "acknowledgement window". Argument number 1 to

system_error() is the generic error code that was returned by IP_manager()\

this code is used to look up an error message which is also displayed in the

acknowledgement window. The programmer thus need only modify the string

passed as argument number 0 to system_error() to an appropriate message. If

no error occurs during image processing and line 9 is executed, the function

add_image_to_buffer() is called, adding the processing routine's destination

www.manaraa.com

130

image to the global image buffer and also displaying it on the screen. Line 10

is the all-important break statement that passes control to the end of the

switch construct. The programmer need not modify lines 9 or 10. If a

processing routine takes two input images the code of Figure 4.14 needs to be

modified somewhat. The modifications involve adding another call to

get_image_from_user() and another test of the returned image pointer similar

to the one in line 3. The programmer is referred to the code in

Math_Manager() for examples of how to deal with two input images.

Step 3 above is fairly straightforward. In each subordinate menu

manager, the word EXITVALUE is first undefined, then redefined with a

preprocessor control line as the menu position of the menu's "Exit" item. Thus,

if a menu for a particular processing class has three processing routines, the

routines themselves occupy menu positions 1, 2 and 3, while the menu title

occupies menu position zero, and the "Exit" item occupies menu position 4. For

such a menu manager we would see the preprocessor control lines:

1 #undef EXITVALUE
2 #define EXITVALUE 4

at the beginning of the manager's code. If we are adding new routines to this

menu, we are "bumping down” the "Exit" item, so we need to adjust the value of

EXITVALUE to reflect it new menu position by replacing the '4' in line 2 above

with the appropriate value.

If the programmer is creating a new image processing class, the

changes that must be made to Managers.c are as follows:

www.manaraa.com

4) To the function / n i t _M a n a g e r (), add a call to the function

CreateStaticMenu() to create a static menu for the new processing class;

5) Create a new subordinate menu manager (and submanagers if necessary)

for the new image processing class (this may be most easily done by

copying and modifying an existing menu manager);

6) Modify Img_Process_Manager(), adding to its switch construct a case label

and accompanying code for the new menu manager;

Recall that when HAPPI is started, all static data structures, including

static menu windows, whose contents will not change the entire time the

program is running, are initialized. These and other initialization functions

are controlled by the function /nit_Manager(). Within /nit_Manager(), the

programmer will find a separate call to the function CreateStaticMenu() for

every class of image processing routines. The programmer should copy and

modify one of these calls to create a static menu for the new processing class.

The new call to CreateStaticMenu() should be placed after all the other calls to

this function in lnit_Manager(). The function header of CreateStaticMenu() is

shown in Figure 4.15.

Creates taticMenu(menu,no,x,y,width_menu,height_menu,menu_index,direct ion)
char **menu; /* input - menu item string */
char direction; /* input - direction of arrangement */
int no; /* input - number of menu items */
int x,y; /* input - position at which to draw menu */
int *width_menu, *height_menu; /* returned - menu dimensions */
int *menu_index; /* returned - menu window ID */

Figure 4.15. Function header of CreateStaticMenu()

www.manaraa.com

132

The programmer should pass arguments to CreateStaticMenu() as

follows: The menu argument should be the name of the array of character

pointers for the menu item text declared and initialized in the file Menus.h.

The no, x, and y arguments should be passed as the menu size, the menu x

location, and menu y location, respectively, for the appropriate class defined

with preprocessor macros in Menus.h. Thus, for the call which creates the

static menu for the morphology class of processing routines, the menu, no, x,

and y arguments are passed as MORPHOLOGYMENU, MORPHOLOGYMENUSIZE,

MORPHOLOGYMENUX, and MORPHOLOGYMENU Y, respectively. Within

/ nit _M ana ge r(), the variables width and height are declared, and their

addresses are passed in all calls to CreateStaticMenu() as the width_menu and

height menu arguments, respectively. Although the values returned in these

variables are not used within I nit _Manager(), the addresses of the variables

still need to be passed to CreateStaticMenu() so that the argument list is

syntactically correct. The menu index argument should be passed as the

address of the global variable (declared in Globals.h) for index of the menu for

the new class. Thus, for the call which creates the static menu for the

morphology class of processing routines, the menu_index argument is passed

as &Morph_Menu, the address of the global integer variable Morph_Menu

declared in Globals.h. This argument is used by CreateStaticMenu() to assign a

unique integer to the menu index variable for each static menu. The direction

argument determines whether the menu items will be drawn on top of or next

to each other. By convention, this argument is passed as V (indicating a

www.manaraa.com

133

"vertical", or vertically stacked, menu) in all the calls to CreateStaticMenu()

for the image processing menus.

The menu manager "skeletons" Newl_Manager() and New2_Manager()

in Managers.c may be used as starting points for creating new subordinate

menu managers. These functions constitute a bare minimum of code to

implement a menu manager routine within HAPPI. An abbreviated version of

the function Newl_Manager() is listed in Figure 4.16.

The particular code added to the skeleton of Newl _Manager() to create a

subordinate menu manager for a new class of processing routines will of

course depend on the nature of the new class. In creating the menu manager

for a new class, the programmer should think about which existing class of

processing routines is most like the new class, and copy and modify code from

the menu manager for that class. The code of Newl_Manager() shown in

Figure 4.16 constitutes the bare minimum code necessary to draw a menu of

processing routines for an image processing class, fetch and process user

input, and call the new processing routine via IP_manager().

We now discuss the code of Figure 4.16 line-by-line, noting which lines

need to be changed to create a menu manager for a new processing class. The

programmer should change the function name in line 1 to a descriptive name

for the new processing class. Lines 2 and 3 are the same for all menu

managers, and do not require modification. The arguments prev_menu and

exit item are used to pass information about the "parent" menu manager

(Img_Process_Manager() in this case) to each subordinate menu manager; this

information makes it possible to allow the user to exit a subordinate menu

www.manaraa.com

134

1
2
3

4
5
6
7
8
9
1 0
1 1
1 2
1 3
14
15
16
1 7

Newl_Manager(prev_menu,exit_item)
int prev_menu;
int exit_item;
(
int
int
IP.SUBCLASS
int
int

index;
action;
value;
menu_index;
done = 0;

int
IMAGE
IP.CLASS
IP.SUBCLASS

IPerror;
source;
class = newl_proc;
subclass;

#undef EXITVALUE
#define EXITVALUE 4
DisplayStaticMenu(Newl_Menu,NEWlPROCESSMENUX,NEWlPROCESSMENUY);
menu_index - Newl_Menu;
while(! done)

18
19
20
21

22

23
24
25
26
27
28
29

Action Monitor(&index,&action,& value);
if((index == prev_menu)&&(value == exit_item))

done = 1;
else if((index == menu_index) && (action == 1))

{
switch(value)

{
/* case 0: do nothing */
case newl_l: {same or similar code as in Figure 4.14)
case newl_2: [same or similar code as in Figure 4.14)
case newl_3: {same or similar code as in Figure 4.14)
case EXITVALUE: (

HighLightItem(menu_index,EXITVALUE);
done = 1;
break;

)
3 0 UnHighLightItem(menu_index, value);

}
)

31 RemoveStaticMenu(menu_index);
}

Figure 4.16. Abbreviated code for code skeleton Newl _Manager()

www.manaraa.com

135

manager by selecting the exit item of the parent menu. Lines 4 through 10 are

also common to all of Img_Process_Manager()'s subordinate menu managers,

and do not require modification. The index, action, and value variables

declared in lines 4-6 are for use by ActionMonitor(). The menu_index variable

simply holds the index (a unique identifying number) of the menu window

which is drawn by the subordinate menu manager. The done variable is used

as the condition of the menu manager's controlling while loop, and is set to a

value of 1, aborting the loop, only when the user selects the menu's "Exit" item

or the parent menu's "Exit" item. The IP error variable is used to hold the

returned error code from IP_manager. The source variable is an image

pointer variable (data type IMAGE), and holds the address of an image selected

by the user. For some managers, it is necessary to declare additional image

pointer variables to hold the addresses of other input or output images used or

created by processing routines. The programmer is referred to the code of

Img_Analysis_Manager() and Math_Manager() for examples of how multiple

input and/or output images are handled. Line 11 both declares and initializes

the class variable; the programmer should change the initialization value in

this line to be the enumerator for the new processing class. Line 12 simply

declares the subclass variable which, along with the class variable is passed to

IPmanager; the programmer need not change line 12. In lines 13 and 14, the

word EXITVALUE is undefined and then redefined to a value equal to the menu

position of the "Exit" item for the menu drawn by this menu manager. The

programmer should change line 14 to define EXITVALUE to the appropriate

value. Line 15 displays the static menu for the new processing class. The

programmer should modify the argument list of the call to

www.manaraa.com

136

DisplayStaticMenu() in line 15 as follows: Argument number 0 should be the

menu index of the static menu for the new processing class. (Recall that the

menu indices for the static menus are global variables declared in Globals.h

and assigned values at initialization by the function CreateStaticMenu().)

Arguments number 1 and 2 should be the x and y pixel locations, respectively,

where the menu for the new processing class will be drawn on the screen.

These locations are defined with preprocessor control lines in Menus.h. Line

16 assigns the value of the menu index of the static menu for the new

processing class to the variable menu_index\ this variable is used in several

lines of code in the remainder of the menu manager, hence by assigning the

appropriate value to me nu_index in line 16, we avoid having to change the

many lines of code in which it appears. The programmer should change line

16 to assign the appropriate menu index to the menu_index variable; this will

be identical to the menu index passed as argument number 0 to

DisplayStaticMenu() in line 15. Lines 17 through 22 set up the controlling loop

construct of the menu manager, fetch mouse input via ActionMonitor(), and

test the returned input. These lines do not require modification. Lines 23

through 25 are the case labels corresponding the various routines in the new

processing class. (Note that although consecutive case labels have consecutive

line numbers in this abbreviated code example, the code following each case

label in the actual menu manager occupy several lines.) The programmer

should replace the words "newl_l", "newl_2", and "newl_3" in the case labels

with the appropriate enumerators for the individual processing routines in

the new processing class. Although there are three case labels in this code

example, the programmer should add or delete case labels as appropriate to the

www.manaraa.com

137

number of processing routines in the new class. The remainder of the code,

from lines 26 through 31, is common to all menu managers and does not

require any modification. The code following each of the case labels in the

new menu manager is, as noted in Figure 4.16, the same as, or similar to, the

example code of the previous Figure 4.14. The programmer will need to make

the same kinds of modifications to this code as were discussed in connection

with Figure 4.14. The programmer is encouraged to examine all of

Img_Process_Manager()'s subordinate menu managers to see how they serve

routines with different input & output requirements.

The function I m g _P r o c e s s _M ana g e r () contains a single switch

construct, with case labels for each of its subordinate menu manager. The

programmer should add a new case label to this construct for the menu

manager serving the new processing class, with the word following "case"

equal to the enumerator for the new processing class. The programmer should

then copy the code following one of the other case labels and modify it to call

the menu manager for the new processing class. The code following the case

labels of I mg _P roc ess _Manager()'s switch construct is of the form shown in

Figure 4.17, where MenuManagerName() is the name of the appropriate

subordinate menu manager. The programmer needs to modify only line 3 of

the above code fragment to call the menu manager for the new class after

copying the four lines of code from an existing case label. The programmer

should also modify the preprocessor control line within

Img_Process_Manager() that defines the word EXITVALUE; the value defined

www.manaraa.com

138

for EXITVALUE should be incremented by the number of new processing

classes being added to the image processing menu, so that it properly reflects

the menu position of the "Exit" item on that menu.

1 HighLightItem(menu_index,value);
2 ClearInfoLine(instr_window_index,0);
3 A/enuA/anager/Vame(menu_index,EXITVALUE);
4 break;

Figure 4.17. Example code for case labels in Img_Process_Manager()

The above completes the code modifications necessary to integrate a

new processing algorithm or group of algorithms into HAPPI. The next step is

to compile, and debug, if necessary, the modified code. Compilation of HAPPI is

usually accomplished using the UNIX make utility. The details of make are

beyond the scope of this document; we give here only a brief description of its

operation. In a large program such as HAPPI, the source code is distributed

over many files, and changes in one file may necessitate the recompilation of

several other files. These file dependencies are explicitly declared in what is

called a "make file" (the name of HAPPI's make file is "makefile"). The make

utility reads the make file, checks the file dependencies, checks the date and

time of last modification of all appropriate files, then selectively recompiles all

files which have been modified since the last compilation and all of their

dependent files. Thus, to recompile HAPPI, the programmer need only type

"make" at the UNIX prompt while in the directory containing HAPPI's source

www.manaraa.com

139

code and make file; make does the rest of the work. The programmer is

referred to the Stellix Programmer's Guide or [UNIX references] for further

information on make.

Once the programmer gets HAPPI to compile without error, he/she

should test it thoroughly. The parameter fetching routine should be

thoroughly exercised by checking to see that the default values for all input

parameters are correct, and attempting to change all of the input parameters.

The processing routine itself should be tested by using an input image for

which the output may be easily predicted. For example, in testing HAPPI's two-

dimensional FFT routine, a 2-dimensional rectangular pulse was used as the

input image, with the resulting two-dimensional sine function indicating the

correct operation of the routine. Once the programmer is confident the new

parameter fetching and image processing routines are working correctly, the

parameter fetching routine should be moved to the file IPparams.c and the

processing routine should be moved to the file IProutines.c, and HAPPI should

be once again recompiled. Since IPparams.c and IProutines.c typically do not

need to be recompiled often, this step helps keep the frequently recompiled

files IPtest.c, IPtest2.c, and IPtest3.c relatively small, so that compile time is

minimized.

The programmer is encouraged to the use the symbolic code debugger

dbx in the event that his/her code does not run properly. Details of dbx are

beyond the scope of this document; however a summary of some basic dbx

commands is given here. The debugger is invoked by typing "dbx filename" at

the UNIX prompt where filename is the name of the command used to invoke

HAPPI; this command is "happi" on many systems where the program is

www.manaraa.com

140

installed, but the version of the program maintained in the directory

/home/catd/src on the Image Processing Lab's Stellar GS1025 computer is

currently called "snappy". For dbx to do symbolic debugging, the source code

of the program being debugging needs to have been compiled with the "-g"

compiler option; this is taken care of by HAPPI's make file. Two useful dbx

commands are where and print. The where command gives the dbx user a

stack trace; this shows where in the hierarchy of function calls the error

which caused the program to crash occurred. The print command simply

prints the value of a variable at the time the program crashed. On-line help

may be accessed from within dbx by typing "help" at the dbx prompt.

4.12 Common Programming Errors

In this section, we briefly describe some of the more common

programming errors observed when new code has been added to HAPPI. While

our coverage of programming errors cannot be exhaustive, it is hoped that

this section will help the programmer avoid some of the errors committed by

the original programmers of HAPPI.

A common cause of fatal errors (those that result in the program

crashing) in HAPPI is attempting to access an array element that does not

exist. HAPPI uses many dynamically allocated arrays, and the programmer

may occasionally lose track of which arrays are currently defined and/or the

current dimensions of those arrays. Messages such as "Segmentation fault"

and "Bus error" issued by the operating system at abnormal termination of

HAPPI frequently indicate such an error. The code causing the problem can

www.manaraa.com

141

often be found using dbx. Another, related error which may result in the

program crashing and the same error messages as above being issued is the

failure to check for null pointers returned by memory allocation functions.

The matrix allocation routines discussed in Section 4.6 return pointers to the

amount of memory requested by the programmer only when it is possible for

the system to allocate that memory. If the system cannot allocate the amount

of memory requested, the routines return a null pointer, and it is up to the

programmer to check for this.

The programmer is also responsible for freeing dynamically allocated

memory once it is no longer being used. Failure to do so can result in a

condition known as memory fragmentation, wherein new memory allocation

requests cannot be satisfied due to the needed memory being tied up by data

structures that have not been deallocated after they are no longer in use. The

programmer should make a habit of typing in the appropriate memory

deallocation routines at the end of his/her routine immediately after using an

allocation routine.

If the default values of a processing routine's input parameters are not

written correctly in the menu window created by the parameter fetching

routine, the programmer should check the calls to sprintfO in the parameter

fetching routine. This type of error is often caused by an incorrect

conversion specification being used in the sprintfO call.

One potentially elusive source of error is the accidental use of function

or variable names that are either already defined elsewhere in the code or are

defined by UNIX. Becoming familiar with the file Globals.h will help the

programmer to avoid some of these problems. If it is suspected that a variable

www.manaraa.com

142

or function name is already defined, the programmer should search HAPPI's

source code for the name using the UNIX grep command. If it is suspected that

a function name is identical to a system call name defined by UNIX, the

programmer should check to see if there is a UNIX manual page for the name

using the UNIX man command.

Another elusive error is the accidental placement of a semicolon

directly after the closing parenthesis of the conditional expression of a for,

while or do loop. In C, executable statements are terminated with semicolons,

so the programmer is used to placing a semicolon at the end of almost every

line of code. If a semicolon is placed directly after the expression of a loop

construct, however, the compiler will interpret this as a null, or "do nothing"

statement, to be executed as many times as indicated by the loop construct’s

conditional expression, and it will appear as if the loop is not being executed at

all. As image processing routines characteristically make extensive use of

looping, this error occurs more often than might be expected.

4.13 Adding New Convolution Kernels to HAPPI

New convolution kernels may be added to HAPPI without writing a

single line of source code. Under the "Convolution" menu item on HAPPI's

Image Processing menu are (at this writing) two submenu items, "Template

List", and "User-defined". The sub-submenu under the "Template List" item is

built when HAPPI is invoked by the reading the data file "templates.happi" in

HAPPI's source code directory. This file contains an arbitrary number of

convolution kernel specifications of the form shown in Figure 4.18. Note that

www.manaraa.com

143

this file is not a C source code file, and the lines of the file are not terminated

with semicolons. All italicized fields in the above figure are to be defined by

the user editing the templates.happi file. The mynewkernel field should be set

title = mynewkernel
size = sizeofnewkernel
row _1 _data
row 2 data

row _n_data
hot_row = row
hot_col = col
denom = denominator

Figure 4.18. Convolution kernel format for kernels read from templates.happi
file

to the text the programmer wants to appear in the Template List menu. The

sizeofnewkernel field should be set to the (integer) length of one side of the

new kernel. Note that only square convolution kernels may be defined in this

file. The row_l _data through row_n_data fields should be set to the

convolution kernel weights for each row of the kernel, respectively. The

individual weights must be separated by spaces on each line, and only integer

data are allowed in these fields. The row and col fields should be set to the row

and column, respectively, of the convolution kernel to which the convolution

sum will be accumulated. Usually, these are set to the center row and column.

The denominator field is set to a floating-point number by which the

convolution sum will be divided before its value is written to the destination

image of the convolution routine. Typically, the value used is equal to the sum

www.manaraa.com

144

of the convolution kernel weights. As an example, the kernel for a 3x3

uniform-weight lowpass filter is shown in Figure 4.19.

title = low_pass_l
size = 3
1 1 1
1 1 1
1 1 1
hot_row = 1
hot_col = 1
denom = 9.0

Figure 4.19. Convolution kernel for 3x3 lowpass filter

www.manaraa.com

145

CHAPTER 5: DIGITAL X-RAY IMAGE FORMATION

5.1 Introduction

In this chapter, we provide as background the basic relations of X-ray

image formation and discuss in general terms the formation of digital X-ray

images as they are presented to HAPPI for processing. The remainder of this

thesis will explore how several of HAPPI’s image processing routines affect

the size of idealized image features.

5.2 X-ray Radiography

Much of the discussion in this section paraphrases parts of the chapter

on radiological methods in the text by Halmshaw (1987). The reader is referred

to this text and its references for further details. X-rays are a form of

electromagnetic radiation, of the same physical nature as visible light, with

wavelengths of about 10 nm to 10"4nm. The wavelength of X-rays allows them

to penetrate all materials with partial absorption during transmission. X-rays

travel in straight lines outward from a source, and for all practical purposes

cannot be focused. Thus, in a typical radiography setup, a conical beam of X-

rays emanates from the X-ray source. A radiograph is produced by placing an

X-ray source and a piece of photographic film on opposite sides of the

specimen to be examined, and exposing the film to the radiation transmitted

through the specimen for a long enough period of time to sensitize the silver

halide crystals in the film. The necessary exposure time will depend on the

www.manaraa.com

146

intensity of the X-ray source, the sensitivity of the film, and the X-ray

absorption properties of the specimen. The basic law of X-ray absorption is:

Ix = locxp(-px) (5.1)

where x is the thickness of the material, IQ is the incident intensity of

radiation, Ix is the transmitted intensity, and /i is a constant, known as the

linear absorption coefficient, whose value depends on the material and the X-

ray wavelength. Some proportion of incident X-rays will be re-emitted within

the specimen as scattered radiation, and can, under some conditions, travel in

a different direction to the primary beam. Equation 5.1 is strictly only valid

for monoenergetic radiation and narrow-beam conditions under which the

amount of scattered radiation reaching the detector is negligible, but is often

applied in other than these conditions to determine an “effective” value of p

for practical applications.

The response of radiographic film to incident radiation is measured in

terms of optical density D, which is defined as:

D = logio VoHt) (5-2)

where IQ is the intensity of light incident on one side of the film and It is the

intensity of light transmitted through the film. Optical density of film is

typically plotted as a function of the logarithm of the exposure E, which is

www.manaraa.com

D
en

si
ty

,
D

147

defined as the product of the incident X-ray intensity / and the exposure time t:

E-lt (5.3)

The typical “D vs. logio£” characteristic curve of a given photographic film

will look like Figure 5.1.

Figure 5.1. Typical density vs. log(exposure) curve

www.manaraa.com

148

It may be seen that there is a portion of the film’s characteristic curve for

which density D is approximately linear in logio£. Strictly speaking, the slope

of the curve is slightly greater at higher exposures. However, the resulting

higher optical densities require much higher-powered light sources for

proper viewing. There is thus a tradeoff between achievable contrast (which

translates to specimen thickness sensitivity) and viewability (Halmshaw 1973).

Workers in the X-ray Image Processing Group at ISU have found that for

purposes of digital analysis, higher optical densities, with their larger

dynamic range, are more desirable than lower optical densities. The video

cameras and scanners typically used in digitizing radiographs usually have

adjustable sensitivity that allows them to compensate for low light levels.

When a radiograph is produced using exposures which keep the film density

in the linear region of the characteristic curve (as is common practice), there

will be a relatively simple and direct relationship between film density and

material thickness. Provided that the assumptions behind Equation 5.1 hold,

material thickness could theoretically be calculated using density

measurements from the radiograph, film characteristic curve data, and

Equation 5.1. However, in practice, it is suggested that such calculations be

bypassed in favor of an empirical density-thickness calibration using a

radiographic tool known as a step wedge (Halmshaw, 1979). A step wedge is

simply a block of the same material as that being inspected (so as to have the

same absorption coefficient ji), which has several graduated “steps” of

increasing thickness machined into it. The wedge is placed by, and

radiographed with, the specimen so that film density measurements from the

specimen may be directly compared to density measurements for a known

www.manaraa.com

149

material thickness. Such an empirical calibration automatically accounts for

departures from the film’s ideal characteristic curve and for errors due to

Equation 5.1 not being exact. In this thesis we will assume that suitable

calibrations can be done which will, for purposes of doing image processing,

transform film density data into material thickness data.

On a radiograph, the scattering of X-rays within the specimen is

manifest in the blurring of sharp edges, termed unsharpness, and in the

reduction of contrast. If we consider a one-dimensional slice of an X-ray

image (i.e., a film density function of a single spatial variable), the effect of

scattering may be modeled using a line spread function, or LSF, which is the

integration over one dimension of the two-dimensional point spread function,

or PSF. This line spread function is convolved with the 1-d slice representing

the ideal film density response in the absence of scattering to arrive at a slice

which accounts for scattering. The scattering unsharpness line spread

function has been found to be (Fishman, et al., 1981, Notea, 1983):

LSFs(x) = (a/2)exp(-alxl) (5.4)

where the variable x represents distance along the 1-d slice, and a is a

characteristic parameter whose value is determined by the radiographic

system and the material being examined. The parameter a has units of inverse

distance.

Another source of blurring in the radiograph is the finite spatial extent

of the X-ray source. X-rays are emitted from every point of the source, and

hence, any single point in the specimen is imaged on the film by X-rays from

www.manaraa.com

150

the many spatially distinct points of the source. Blur due to the finite spatial

extent of the X-ray source is termed geometric unsharpness, and may be

modeled using a LSF of the form (Notea, 1983):

LSFg(x) = {\IUg)[u(x + Ug/2) - u(x - Ug/2)} (5.5)

where Ug is the geometric unsharpness parameter, which has units of length,

and u(x) is a unit step function. Thus, LSFg(jc) has a rectangular distribution; it

assigns equal weight to all values of the ideal film density for x in the range

[-(/g/2, (/g/2].

5.3 Typical Apparatus for Digital Processing of X-ray Images

The apparatus used by the X-ray Image Processing Group in the

Electrical and Computer Engineering Department at Iowa State University for

processing NDE X-ray images is shown schematically in Figure 5.2. This setup

is typical of those used for a variety of industrial applications. The radiograph

is illuminated from below by the lightbox, and the transmitted light is

converted to an analog electronic signal by the video camera. The video signal

from the camera is then digitized by the frame grabber and moved to the

memory and/or hard disk of the computer in which the frame grabber is

installed. The resulting digital image is then transmitted across an Ethernet

network, and processed and displayed on a powerful central host computer.

Each of the components in the path from the original specimen to the

digital representation of the radiograph within the host computer is a source

www.manaraa.com

151

of noise. The quantum nature of electromagnetic radiation results in photon

counting noise from the X-ray source. Porosity, graininess, or other texture of

the specimen may show up in the radiograph. If this texture is considered

normal (i.e., not indicative of a flaw), but makes it more difficult to accurately

detect and measure true flaws in the specimen, it may be considered to be

noise. The radiographic film will introduce film grain noise, due to the finite

www.manaraa.com

152

size of the silver halide crystals in the film emulsion. The lightbox used to

illuminate the radiograph will have some flicker and field non-uniformity.

The image sensing element and electronics in the video camera will produce

noise. The frame grabber electronics will also produce noise, and as with all

digitized signals, the image that is finally processed by the host computer will

contain quantization noise.

The Central Limit Theorem of statistics states that the probability

distribution of the sum of independent random variables, in the limit as the

number of random variables in the sum goes to infinity, is gaussian,

regardless of the distributions of the individual random variables in the sum.

This theorem is behind the assumption of gaussian noise made in many

analyses in the study of random phenomena. Rather than attempting to model

all of the independent noise sources in the lab setup of Figure 5.2, we will

instead in this thesis appeal to the Central Limit Theorem. For purposes of

investigating how HAPPI’s various processing routines affect the size of image

features, we will use idealized image features bathed in additive white gaussian

noise.

To inquire into the plausibility of using gaussian noise in our test

images, we extracted portions of a digitized image of a real radiograph of a flat

metal plate. The extracted image regions were selected so as to have - as well as

could be determined by eye - stationary mean and variance. Histograms of

these image regions were computed, and are shown in Figure 5.3. With a little

imagination, the reader may see that the histograms of Figure 5.3 appear to

have an approximately gaussian shape. While the gaussian noise in our test

images may not always accurately model the complex real-world noise

www.manaraa.com

153

processes present in a digitized radiograph, the measurements made on the test

images and presented herein are, at the least, a reference point for more

detailed future work.

Frequency
Histogram of image: rgcone.17.i

(a)

Frequency
Histogram of image: rgcone.20.i

o.oo 100.00

(b)

200.00

Histogram

Grey level

Histogram of image: rgcone.17.i
Frequency

Histogram of image: rgcone.20.i
Frequency

P ' ' Smoothed Hist
280.00 r

260.00 j-

240.00 -

220.00 -

200.00 k

180.00-

160.00 p

140.00 r

120.00 f-

100.001-

80.00 r

60.00 '-

40.00 -

Grey level
0.00 100.00 200.00

20.00 - |
0.001

(c) (d)

Figure 5.3. Histograms of two separate regions of an image with locally
stationary mean and variance: (a) Histogram of first region; (b)
Histogram of second region; (c) and (d) Three-point smoothed
versions of (a) and (b), respectively

www.manaraa.com

154

CHAPTER 6: FEATURE SIZE MEASUREMENT

6.1 Introduction

In this chapter, we discuss the issues involved in determining the size

of an image feature in a digitized X-ray radiograph. The methods used in this

study, and the rationale behind them, are presented. The study in this thesis is

concerned with presenting data on the influence of several of HAPPI’s image

processing routines on image feature size. Thus, the size measurement

methods used are intended to be reasonable, and not necessarily optimal. It is

hoped that, in the interest of quantitative NDE, future studies might explain

the observations presented here with a theoretical formulation.

6.2 Feature Size Measurement and Edge Detection

A radiograph is, ideally (i.e., not accounting for noise and

unsharpness), a two-dimensional projection of the three-dimensional

distribution of the X-ray absorption coefficient in a specimen. As the X-rays

travel in a straight path from the source through the specimen to the film,

they are attenuated by an amount that depends on the absorption coefficient

of the specimen material and the distance traveled through the material, as

per Equation 5.1. We may speak of the through-thickness of a specimen (or of

a flaw within the specimen) along a particular X-ray’s path as the distance

between the X-ray’s entry and exit points on the specimen (or flaw). In many

NDE situations, one is concerned with locating and determining the size of

www.manaraa.com

155

voids or cracks in a material. Such types of flaws are usually filled with a gas,

often air, and have an absorption coefficient orders of magnitude lower than

that of the specimen material. Thus, an X-ray passing through such a flaw in a

specimen of a given through-thickness will be attenuated less than one

passing through the same specimen with no such flaw present, with the

difference in attenuation depending upon the through-thickness of the flaw

and Equation 5.1.

The types of measurements we will be concerned with in this thesis will

be those of dimensions in the “film plane”, that is, distances between points on

a radiograph. These distances represent projections of dimensions of actual

physical dimensions in a specimen. To keep the study basic, the image

features studied are idealized models of a square flat-bottom hole in a flat plate,

radiographed with a parallel-beam X-ray source directed perpendicular to the

bottom of the hole. In terms of an idealized image (in which noise and

unsharpness are not modeled), this translates to a uniform image background

of one single grey level (modeling the flat plate), with a square foreground of

a lower uniform grey level (modeling the hole). The actual images used had a

foreground of higher intensity than the background, however, this does not

introduce any inconsistency, as the edge location measurements taken would

be the same had the foreground had the lower intensity. The square

foreground region was placed at the exact center of all test images. The test

image dimensions were 511x511 pixels, and the square image feature

dimensions were 101x101 pixels. Figure 6.1 is an example of one of the test

images used (note that any streaking in this particular image is due to the

printer used and is not present in the actual image):

www.manaraa.com

156

Figure 6.1. Image modeling ideal square flat-bottom hole

www.manaraa.com

157

Determination of image feature size implies determination of the

feature’s edge locations. The size of the feature in a particular direction in the

film plane is then just the distance between edge locations along that

direction. Thus, our problem is one of edge detection and registration. In the

absence of noise, the edges of a feature may be located precisely with respect

to an edge definition. This definition may be given as, for example, the locus

of points of a particular intensity somewhere between the peak intensity of

the feature and the background intensity. Fishman et al. (1981) use such an

edge definition to determine edge locations for a few ideal flaw geometries

when scattering unsharpness is modeled using Equation 5.4. Their methods do

not address edge location in the presence of noise, and depend upon knowing

radiographic system parameters (namely the constant a in Equation 5.4).

In the presence of noise, edge locations must be estimated using as

much of the relevant available data, which implies smoothing of the data in

the neighborhood of the edge. Smoothing implies a tradeoff between detection

and localization (i.e., accurate registration of location) of edges, as has been

noted by Canny (1986) and Bergholm (1987). Canny illustrates that there is a

natural sort of “uncertainty principle” in the edge detection problem.

Maximizing accurate edge detection (i.e., having a high detection rate of true

edges while having a low false-alarm rate) in the presence of noise amounts to

maximizing the signal-to-noise ratio (SNR) in the vicinity of the edge, which

is done by some sort of smoothing. However, too much smoothing can smear,

or displace, an edge, resulting in inaccuracies in size measurements.

In analyses of one-dimensional step edge profiles bathed in additive

white gaussian noise, Canny, Bergholm, and others have found that when the

www.manaraa.com

158

definition of edge location is taken as the maximum of the gradient magnitude

of the edge profile, the gaussian function is the most reasonable smoothing

function for estimating edge locations. Here, “most reasonable” is meant in

the sense of simultaneously maximizing SNR and edge localization while

suppressing spurious response and being computationally efficient. In his

analysis of one-dimensional edge profiles, Canny assumes that two-

dimensional edges have locally constant cross-section; this assumption is true

of smooth edge contours and of ridges, but not of corners. By “locally constant

cross-section”, it is meant that in a neighborhood about the edge, image

intensity is constant along lines perpendicular to the edge direction. Figure

6.2 illustrates a region of an edge with a locally constant cross-section;

Intensity

Figure 6.2. Edge with locally constant cross-section

www.manaraa.com

159

The idea of smoothing or averaging an image in the direction

perpendicular to the edge direction is important to convolution-based edge

detectors and to the measurements presented in this thesis. When the

underlying edge signal in a noisy image has locally constant cross-section,

and the image noise process is stationary, we may diminish the noise variance

(thereby improving the SNR and thus improving edge detection) without

smearing the edge by forming an average of the image pixels along the

direction perpendicular to the edge direction. The attainable improvement in

edge detection and localization performance will depend upon the noise

amplitude and the length of the locally constant cross-section: the longer the

locally constant cross-section, the more we can expect to reduce the noise

variance, and thus to increase edge detection performance.

Canny’s edge detection operators are designed such that they smooth an

image in the direction perpendicular to the edge direction. These operators

are a set of convolution masks which have a nearly rectangular profile in one

direction, and which in the perpendicular direction have a profile that is the

derivative of the gaussian function. Note that convolving with the derivative

of the gaussian is equivalent to convolving with a gaussian and then taking

the derivative, due to the following property of the convolution integral (see

Haykin, 1983, p. 39 for a proof):

If f(x) = g(x)*h(x), then

df(x)/dx = (dg(x)/dx)*h(x) = g(x)* (dh(x)/dx) (6.1)

www.manaraa.com

160

where * denotes convolution and df(x)/dx is the derivative of f(x). Thus,

Canny’s edge detection operators effectively take the derivative of the

gaussian-smoothed image in one direction while simultaneously forming an

essentially unweighted average in the perpendicular direction. Figure 6.3

depicts orthogonal profiles and a grey scale display of Canny’s edge detection

operators.

Figure 6.3. Canny’s edge detection operators (a) Profile perpendicular to edge
direction; (b) Profile parallel to edge direction; (c) grey scale
display of several masks

www.manaraa.com

161

We note here that traditional edge detection operators, such as the Sobel

masks, also do some averaging (albeit somewhat weighted) perpendicular to

the edge direction. The Sobel mask for vertical edges is as shown in Figure 6.4.

When this mask is convolved with a vertical edge, the contribution to the

convolution sum from the mask weights of 1, 2, and 1 in the bottom three

pixels of the mask constitutes a weighted average of image pixels in the

horizontal direction. Similarly, the contribution from the mask weights in the

upper three mask pixels is also a weighted average of image pixels in the

horizontal direction. For a perfectly vertical edge, this averaging has the

effect of smoothing noise without smearing the edge.

-1 - 2 - 1

0 0 0

1 2 1

Figure 6.4. Sobel mask for vertical edges

www.manaraa.com

162

6.3 Measurement Methods

In this study, we have chosen to measure edge locations in a one¬

dimensional sense. For our test images (which are noisy versions of the

square flat-bottom hole of Figure 6.1), the direction of the left and right edges

is perfectly horizontal, so we have measured edge locations in each

(horizontal) image row independently, using only a single row of data for

each measurement. The edge location and feature size measured from a single

row may thus be regarded as random variables with a different realization for

each image row. From our set of row-by-row measurements, we calculate a

mean and variance of edge location and image feature size. In what follows,

mean and variance of edge location are denoted by |ie and a2
e, respectively,

while mean and variance of feature size are denoted by |if and o 2 f,

respectively. Standard deviation of edge location and feature size are thus

denoted by ae and Of, respectively.

For a test image composed of the flat-bottom hole of Figure 6.1 bathed in

a stationary noise field, each image row will have the same SNR. Thus, the

statistics for edge location and feature size calculated from our row-by-row

measurements will give some sense of how precisely we can locate an edge

with a given SNR using a single one-dimensional slice through the edge in the

edge direction. This information in turn gives us a sense of the achievable

increase - through averaging perpendicular to the edge direction - in edge

location performance for a given image feature having locally constant cross-

section. To visualize the above ideas, consider the image of a crack-like flaw

www.manaraa.com

163

illustrated in Figure 6.5 and the task of estimating the crack width in the

presence of noise. If we take a single 1-d slice across (i.e., normal to the

direction of crack propagation) the crack in the region of constant cross-

section and use it to estimate the crack edge locations and crack width by some

edge detection scheme, our estimates will be realizations of random variables

with certain means and variances (namely pe and a2
e for edge location and pf

and for feature size). Since the crack has locally constant cross-section

along some part of its length, we can reduce image noise variance by

averaging in the direction perpendicular to the crack edges (i.e., along the

length of the crack) over the region of constant cross-section. If we then use

Figure 6.5. Crack-like image feature with region of constant dimension

www.manaraa.com

164

the same 1-d edge detection scheme on such an “averaged slice,” our edge

location and feature size estimates will again be realizations of random

variables, but with improved mean and variance. (An “improved mean” is one

which is closer to the actual value being estimated, and an “improved

variance” is simply a smaller variance.)

For this study, two methods of locating edges in one-dimensional slices

of a noisy image were tried. Both methods used as a first step the smoothing of

the image slice by a (one-dimensional) gaussian function. The first method

then searched each smoothed slice for the location of pixels with grey level

halfway between the grey level of the image feature and that of the image

background; the second method searched each smoothed slice for the location

of the gradient maximum. We will henceforth refer to the first method as the

“half power point method” and the second method as the “gradient maximum”

method. Implementation details of the two methods are discussed later in the

chapter.

The gaussian blur function used in both methods of edge location has

one adjustable parameter, namely the standard deviation, a, of the gaussian.

We will refer to this a as the “blur parameter”, and denote it as ab- This

parameter controls the tradeoff between detection and localization, and its

optimal value for a given image will depend on the image’s SNR. It was thus

necessary to determine what value of Cb to use for an image of a given SNR. As

mentioned at the beginning of the chapter, we were not primarily concerned

with finding absolute optimal measurement methods; rather, we only required

that our measurements be reasonable and consistent. Thus, a detailed analysis

www.manaraa.com

165

to find precise values of the optimal blur parameter for a given SNR was not

conducted. Rather, reasonable values of blur parameter as a function of SNR

were experimentally determined. Our investigation of the influence of

HAPPI’s processing routines on image feature size then was conducted by

using the same value of blur parameter for measuring edge location and

feature size in the pre-processed and post-processed images. In this way, we

were applying the same edge location operator to a given pair of pre-

processed and post-processed images in order to quantify the effects of the

processing routines themselves. The scheme for measuring the effects of

processing on feature size is illustrated in Figure 6.6.

and feature size and feature size
estimate for estimate for
pre-processed post-processed
image image

Figure 6.6. Scheme for measuring effects of processing on feature size

www.manaraa.com

166

6.3.1 The Program mrowblur

A program, mrowblur (for “multiple-sigma row blur”), was written to

determine a reasonable value of blur parameter at a given SNR. Inputs to the

program were as follows: a (noisy) test image; a starting and ending row in the

image; an initial, increment, and final value for the blurring parameter at>;

the blur function length in terms of ab (i.e., number of sigmas); a flag

selecting either the gradient maximum method or the half power method of

edge detection; and, if the half power method was selected, the image grey

levels of the foreground (feature) and background. The program’s operation

was as follows: The range of test image rows specified by the inputs was

blurred with a 1-d gaussian having the user-specified initial value of ab, and

edge locations in each gaussian-blurred row were determined by the user-

specified method. The amplitude of the 1-d gaussian was adjusted for each

value of Ob so that the total area under the gaussian was identically equal to

one.

To find edge locations using the gradient method, the program computed

the central difference of each gaussian-blurred row. The central difference

y[n] of a 1-d sequence x[n] is defined as:

y[n] = x[n+l] - x[n-l] (6.2)

For a data set x[n] defined on the interval n=0 to n=N, y[0] and y[N] cannot be

calculated from the above equation, and must be otherwise defined or left

undefined. In our case, the edges of image features were nowhere near the

www.manaraa.com

167

border of the image, and so the first and last elements of the central difference

formed from each gaussian-blurred image row were left undefined. The

central difference of each gaussian-blurred image row was then searched for

two maxima, and these maxima were declared as the edge locations for that

row. In searching for the two maxima, advantage was taken of the a priori

knowledge that the image feature was brighter than the background and

centered in the image. To help the reader visualize the following discussion,

Figure 6.7 shows an unblurred image row (a), the same row after gaussian

blurring (b), and the central difference of the gaussian-blurred row (c).

Let us denote the sequence containing the central difference of a

gaussian-blurred image row as ;y[n], with n ranging from 0 at the leftmost

pixel in the the row to N at the rightmost pixel. To find the left edge location

in a particular row, the program searched the sequence y[n] starting at its

middle data point (y[N/2] for even N or y[(N-l)/2] for odd N) and scanned to

the left, searching for the most positive value of y[n]. To find the right edge

location, the program searched y[n] from the middle data point and scanned to

the right, searching for the most negative value of y[n].

To find edge locations using the half power method, a simple

thresholding scheme was used, and the program again took advantage of the a

priori knowledge that the image feature was brighter than the background

and centered in the image. Let us denote the sequence containing a gaussian-

blurred image row as x[n], with n ranging from 0 at the leftmost pixel in the

the row to N at the rightmost pixel. To find the left edge location in a

particular row, the program searched the sequence ;t[n] starting at its middle

www.manaraa.com

168

Grey Level
Row slice from image s10n100.1.i

. Row 256

Position

(a)

Blurred (sigma = 6.0) slice from image s10rt100 1
Grey level

Row 255

Position

Central difference of blurred slice
Grey level

Figure 6.7. Image row at three steps of gradient maximum method of edge
detection (a) Unblurred image row; (b) Gaussian-blurred version
of (a); (c) Central difference of (b)

www.manaraa.com

169

data point 0t[N/2] for even N or *[(N-l)/2] for odd N) and scanned to the left,

searching for the first value of x[n] to fall below the grey level halfway

between the feature and background grey levels (we will call this grey level

the “half power grey level”). To find the right edge location, the program

searched x[n] from the middle data point and scanned to the right, again

searching for the first value of *[n] to fall below the half power grey level.

The above implementation of the half power method was found not to

have very good edge location performance for images with low SNR. The

reason for this poor performance was evident from examining gaussian-

blurred slices from low-SNR images and histograms of edge locations found

using the method. In the histograms of edge locations, it was seen that several

edges were declared very close to the center of the image feature (recall that

the search algorithm starts looking for the edge locations at the center of the

image feature). In the gaussian-blurred slices, it was seen that the noise

amplitude was large enough to make the image slice dip below the half power

grey level at many points inside the image feature. From these observations it

was concluded that the simple thresholding scheme used in the half power

edge location method made the method too sensitive to noise. To improve

performance, a modified thresholding scheme, based on one used by Canny,

was implemented. This scheme uses two threshold values and a sort of

hysteresis to lower the sensitivity of edge location to noise. The sequence x[n]

is again scanned to the left and to the right starting from the middle data

point. However, the scan algorithm initially searches for the first value of

*[n] to fall below a threshold lower than the half power grey level, then

reverses scan direction and looks for the first value of x[n] to go back above

www.manaraa.com

170

the half power level. (The second, lower threshold in this scheme was set to

0.25 times the differences between the (higher) feature grey level and the

(lower) background grey level.) The thresholding-with-hysteresis scheme

brought about some improvement in the edge location performance of the half

power method, but at low SNR values, the method still did not compare very

favorably with the gradient maximum method.

Upon finding edge locations for each image row using the user-

specified edge detection method, the mean and variance of the locations of the

left and right edges were calculated and stored. The program then

incremented the value of Ob and repeated the entire process until the final

value of ab was reached. The stored values of edge location mean and variance

for each <Jb value were then written out to a file in a format suitable for

making a range bar plot of (peilae) vs. ab- The program “xgraph” was then

used to generate these plots.

A sequence of test images with decreasing SNR was created using the

Add White Noise function in HAPPI. The definition of SNR used for these

images was the ratio of the signal strength to rms noise level; other definitions

of SNR, such as the square of this ratio, and the logarithm of the square of this

ratio are also used in the literature. By “signal strength,” we mean the

difference between the foreground (i.e., the signal) and the background grey

levels. The original noiseless image from which the sequence was created had

a background grey level of 100 and a foreground grey level of 150, yielding a

signal strength of 50 grey levels. These foreground and background values

were picked so as to “center” the image feature within the 0-255 grey level

dynamic intensity range of HAPPI’s image format, and so that noise could be

www.manaraa.com

171

added to the original image at rms levels high enough to achieve an SNR as low

as 0.25 without the noise significantly saturating the 0-255 grey level dynamic

range.

6.3.2 Determination of Critical Values of Blur Parameter

The program mrowblur was run on each test image in the sequence

using the gradient maximum method, and the results were graphed in a

sequence of range bar plots. For the most part, the graphs appeared well-

behaved. At any given SNR, edge location variance a1 2
e decreased, and mean

edge location pe moved closer to true edge location, as the blur parameter Ob

increased. However, some anomalies showed up in one or two plots, and were

found to be due to one or two outliers in the histograms of edge locations. The

program mrowblur was thus modified to discard these outliers in calculating

edge location mean and variance. The modified version of mrowblur discarded

edge locations outside the range i2oe in the histogram of edge locations and

recalculated the values of |ie and ae. This version of mrowblur was then run

again on the sequence of test images, and another sequence of range bar plots

was made. This sequence is shown in Figure 6.8. From the sequence of plots in

Figure 6.8, we may observe the following:

1) At a given SNR, edge location standard deviation ae and bias (i.e., magnitude

of the difference between mean edge location p.e and true edge location)

decrease rapidly with increasing Ob at low values of Ob. but slow or stop

decreasing with ab once a critical value of ab is reached. The critical value

www.manaraa.com

172

of ab is thus the smallest (and therefore most computationally efficient)

value of blur parameter that will yield the best attainable edge location

estimate with the present edge location scheme.

2) The critical value of Cb on each range bar plot was higher for images with

lower SNR, and lower for images with higher SNR. For images with SNR

above say 10, the critical value of ab was so low that for all practical

purposes of edge location, it could be considered to be zero (i.e., no blurring

is required for edge detection in an essentially clean image).

3) The terminal value reached by ae at the critical value of ab was larger for

smaller SNR’s, and smaller for larger SNR’s.

The critical values of Ob at each SNR were picked off of the plots of

Figure 6.8 by eye, and plotted as a function of SNR as shown in Figure 6.9. The

critical ab values were selected from each plot as the value of ab at which the

edge location bias and standard deviation for both the left and right edge

ceased to decrease with increasing Ob- For parts (0, (g), and (h) of Figure 6.8,

edge location bias and standard deviation fluctuate slightly about their

terminal values as ab continues to increase beyond its critical value, making

the selection of the critical ab values somewhat subjective. In selecting

critical ab values from these three plots, we took into account the notion that

the critical ab value should be a strictly decreasing function of SNR, and were

www.manaraa.com

173

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.6.i
Edge Location, pixels

—i 1 r i r- Left Edge Location

440.00 Right Edge Location

420.00 — True Left Edge Location

400.00
True Right Edge Location

380.00

360.00

340.00

320.00

300.00

280.00 -

260.00 -

240.00 -

220.00

200.00
......................

180.00 -

160.00 -

140.00 -

120.00 -

100.00 -

80.00

_J 1 1 i i Pliir noromptAr (ci rrma
0.00 10.00 20.00 30.00 40.00

(a)

Figure 6.8. Sequence of range bar plots of mean edge location ± one standard
deviation vs. blur parameter ab, calculated using gradient
maximum method for various values of SNR (a) SNR = 10.0

www.manaraa.com

174

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.7.i
Edge Location, pixels

Left Edge Location

Right Edge Location

True Left Edge Location

True Right Edge Location

Blur parameter (sigma)

(b)

Figure 6.8. (cont’d) (b) SNR = 5.0

www.manaraa.com

175

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.8.i
Edge Location, pixels

Left Edge Location

Right Edge Location

True Left Edge Location

True Right Edge Location

Blur parameter (sigma)

(C)

Figure 6.8. (cont’d) (c) SNR = 2.0

www.manaraa.com

176

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.13.i
Edge Location, pixels

440.00
i i i r~

420.00 - —

400.00
V

-

380.00 i<

360.00
::

—

340.00
ij

ji
• — !•
!:• 320.00 — ! j Ih* —

300.00 ► ..
::::!• —

280.00
•: — •

260.00 —

240.00 —

220.00 1 '•

200.00
» -. IpHHn-

180.00 -

160.00 -

140.00 -

120.00 -

100.00 -

80.00

_j 1 1 1 1
0.00 10.00 20.00 30.00 40.00

Left Edge Location

Right Edge Location

True Left Edge*Location’'

True Right Edge Location

Blur parameter (sigma)

(d)

Figure 6.8. (cont’d) (d) SNR =1.5

www.manaraa.com

177

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.2.i
Edge Location, pixels

Left Edge Location

Right Edge Location

True Left Edge Location

True Right Edge Location

Blur parameter (sigma)

(e)

Figure 6.8. (cont’d) (e) SNR =1.0

www.manaraa.com

178

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.4.i
Edge Location, pixels

Left Edge Location

Right Edge Location

True Left Edge Location

True Right Edge Location

Blur parameter (sigma)

(0

Figure 6.8. (cont’d) (f) SNR = 0.5

www.manaraa.com

179

Mean edge loc’ns +/-1 stddev vs blur for image: slO.lO.i
Edge Location, pixels

Left Edge Location

Right Edge Location

True Left Edge Location

True Right Edge Location

Blur parameter (sigma)

(g)

Figure 6.8. (cont’d) (g) SNR = 0.33

www.manaraa.com

180

Mean edge loc’ns +/-1 stddev vs blur for image: sl0.9.i
Edge Location, pixels

440.00

420.00

400.00

380.00

360.00

340.00

320.00

300.00

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

T

t!

t ?

! • * ♦
•- 5“H ♦ r:~H fK'

♦
4 i-V ,L; i it-?4 r tUi t j-U

Left Edge Location

Right Edge Location

True Left Edge Location

True Right Edge Location

0.00 10.00 20.00 30.00 40.00
Blur parameter (sigma)

(h)

Figure 6.8. (corn’d) (h) SNR = 0.25

www.manaraa.com

181

somewhat conservative, that is, we selected critical ab values that were well

into the region of the plots where edge location bias and standard deviation

had stabilized to within the bounds of the fluctuations about their terminal

values.

Critical blur parameter vs. SNR with outlier rejection
Blur parameter (sigma_b)

2.00 4.00

Slgma_b

SNR

Figure 6.9. Critical value of blur parameter vs. image SNR

With these critical values of Ob in hand, we were now ready to

implement the scheme depicted in Figure 6.6 to measure the effect of HAPPI’s

processing routines on image feature size. The same sequence of test images

www.manaraa.com

182

used as input to the program mrowblur was processed by several of HAPPI’s

noise filters and by a few other of HAPPI’s routines. Another program,

rowblur, was used to find edge location mean and variance in the pre-

processed and post-processed images. The operation of, and inputs to, rowblur

were similar to those of mrowblur, with the differences being that rowblur only

took a single value of blur parameter, and gave as output not only edge

location mean and variance, but feature size mean and variance as well. The

outlier rejection scheme discussed above in connection with mrowblur was also

implemented in rowblur. Both the gradient maximum and half power edge

detection methods were implemented in rowblur. However, as mentioned

earlier in this chapter, the half power method was found to have relatively

poor edge location performance at low SNR values, and so only the gradient

maximum method was used in the measurements presented in the remainder of

this thesis. Table 6.1 lists the values of blur parameter fed to the program

rowblur for each value of the SNR of the pre-processed image.

Table 6.1. Critical values of blur parameter as function of SNR

Test image SNR
10.0
5.0
2.0
1.5
1.0
0.5
0.33
0.25

Critical value of CTK

0.1
0.8
4.6
6.4
12.6
24.9
30.7
33.8

www.manaraa.com

183

Note that the post-processed images in general will have a different (and, we

hope, higher) SNR than the pre-processed images, but we use the same value

of blur parameter in the rowblur program for measuring the pre-processed

and post-processed images. In this way, we are applying the same operator to

both images to obtain an estimate only of the effect of the processing routine

alone on image feature size. In the next chapter, we present some background

on the processing routines used and the results of our measurements.

www.manaraa.com

184

CHAPTER 7: MEASUREMENT RESULTS

7.1 Introduction

In this chapter, we present feature size measurements on unprocessed

noisy test images and on processed test images which have been filtered with a

variety of HAPPI’s processing routines. Specifically, the routines tested were

the adaptive smoothing and modified adaptive smoothing filters, the Kalman

filter, the median and weighted median filter, the root filter, and the sigma

filter, all found under HAPPI’s “Noise Filters” menu. Also tested were the

histogram equalization and expand grey level (linear contrast stretch)

routines, both from HAPPI’s “Contrast Enhancement” menu, and a simple

uniform-weight lowpass filter from HAPPI’s “Convolution” menu. The effect

of the scattering line spread function on mean and variance of edge location is

briefly examined. Finally, selected feature size measurement results are

compared with size measurements attainable using the traditional Sobel edge

detection operator for doing edge location by visual inspection.

7.2 Effect of Processing Routines on Feature Size

We have chosen to display the effects of processing on image feature

size in the following figures by plotting the mean feature size and the -1

standard deviation range of feature size (i.e., pf - laf) vs. the SNR of the pre-

processed image. (Note: the symbols pf and af were defined in Section 6.3 of the

previous chapter.) The input images to each processing routine were the

www.manaraa.com

185

same sequence of test images discussed in Subsection 6.3.1, and thus, for each

of the graphs of (|_t f — 1 crf) vs. SNR in this chapter, the data for the pre-

processed images is identical. Two images from this sequence, with SNR’s of

1.0 and 0.25, respectively, are shown in Figure 7.1 and Figure 7.2.

Ideally, the output image from one of HAPPI’s processing routines

should have a higher SNR (thus yielding better edge location and size

measurement performance) than the input image. However, regardless of the

SNR of the output image, we have plotted the value of (p.f - lof) for each output

image at the SNR of the corresponding input image. In this way, we are able to

visualize the improvement (or degradation) of feature size estimate wrought

by a given processing routine on a particular image with a particular SNR.

Figure 7.1. Test image with SNR =1.0

www.manaraa.com

186

Figure 7.2. Test image with SNR = 0.25

The reader may wish to refer to Figure 7.3 in the next subsection to

visualize the graph features in the following discussion. In the graphs of (pf -

laf) (i.e., measured size) vs. SNR presented in this chapter, there are three line

styles, one each for the measured size in the pre-processed image, the

measured size in the post-processed image, and the actual image feature size

(which was 101 pixels for all test images). The measured size in the pre-

processed images is plotted with a solid line, while the measured size in the

post-processed images is plotted with a dotted line, and the actual size is plotted

with a dashed line. Three curves appear on the graph in the solid line style of

feature size data for the pre-processed images. The top curve represents the

www.manaraa.com

187

mean feature size plus one standard deviation (i.e., pf + ltff), while the middle

curve represents mean feature size, and the bottom curve represents mean

feature size minus one standard deviation (i.e., pf - laf). Another such set of

three curves in the dotted line style of feature size data for the post-processed

images also appears on the graph. Finally, in each graph, a single straight

line in the dashed line style, representing actual feature size (which has no

random variation), is plotted for reference. In the next several subsections,

we briefly discuss the theory behind each of the processing routines tested,

state the parameter values used in each routine, present measurement results,

and give some discussion of salient points.

7.2.1 Adaptive Smoothing Filter

Happi contains two adaptive smoothing filter routines, the “Adaptive

Smoothing Filter” and “Modified Adaptive Smoothing Filter”, found under the

Noise Filters menu. These filters are based on the paper by Kuan et al. (1985)

and are similar in operation. The assumed image degradation model used in

developing the filter is of the form (Zheng and Basart, 1988):

y(i,j) = x(i,j) + u(i ,j) (7.1)

where y(i,j) is the observed, degraded image, x(i,j) is the original image before

degradation, and u(i,j) is the signal-dependent degradation term. The

degradation term u(i,j) is given by:

www.manaraa.com

188

u (i ,j) = f(x(i,j))n(i ,j) (7.2)

where f(x(i,j)) models the signal dependency, and n(i,j) is iid(0,l) random

noise. The filter produces an estimate of each pixel value of the form:

x(ij) = x(i,j) + k(ij)(y(ij) - x(i,j)) (7.3)

where *0J) is the estimate of the original, undegraded image at location (i,j),

x(ij) is the local mean, and k(i,j) is a local calibration factor, given by:

k(i,j) = (1 - VuiiJ)IVyii'j)) (7.4)

where Vu(i,j) is the local variance of the signal-dependent noise, and Vy(i,j) is

the local variance of the observation. Since n(i,j) is zero-mean, the

covariance between x(i,j) and u(i,j) is zero (Zheng and Basart, 1988), and

Vy(i,j)=Vx(i,j) + Vu(i,j), so that k(i,j) may be written as:

k(i,j) = Vx(ij)/(Vx(ij) + Vu{i,j)) (7.5)

Note from Equation 7.5 that if the local SNR is much greater than 1, then k(i,j)

is approximately equal to 1, and the estimate *(*>./) in Equation 7.3 is equal to

the observation y(i,j), while if the local SNR is much less than 1, then k(i,j) is

very small and the estimate x(i,j) in Equation 7.3 is approximately equal to the

local mean x(i>j).

www.manaraa.com

189

Both the adaptive smoothing filter and the modified adaptive smoothing

filter take two parameters: an increment and a window size. The modified

adaptive smoothing filter additionally requires the user to specify an area of

the input image from which to calculate a value of noise variance which is

used globally throughout the image, whereas the adaptive smoothing filter

requires no such input, and automatically calculates local noise variance from

the first difference of the input image. The window size parameter simply

specifies the length of one side of the square window used to calculate signal

and noise variance. The increment parameter specifies the number of pixels

by which the window used to calculate signal and noise variance is moved for

each such calculation. For both adaptive smoothing filters, an increment of 1

and a window size of 7 were used. The window size is constrained by HAPPI to

be an odd number. A 7x7 window yields a sample size of 49 from which to

calculate signal and noise variances; a minimum sample size of 30 to 50 is

generally considered necessary for meaningful calculations of statistics, and

so a window size of 7 is the smallest odd value that yields a “good” sample size.

A larger window size was avoided to keep execution time down.

Figure 7.3 is a plot of measured feature size vs. SNR for the adaptive

smoothing filter. Let us denote the value of pf and of in the pre-processed

images by Pf(pre) a°d crf(pre)> respectively, and similarly denote the value of pf

and Of in the post-processed images by Pf(post) ar*d crf(p0st)> respectively. The

following observations may be made about Figure 7.3:

1) The value of af(pre) becomes very large at low values of SNR. Recall,

however, that the statistics we are calculating for feature size are from a

www.manaraa.com

190

population of feature sizes measured from individual noisy image rows. It

is to be expected that when edge location and feature size are estimated

from a single image row with a low SNR, the measurement will likely be

Adaptive smoothing filter w/7x7 window; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.3. Measured size vs. SNR for adaptive smoothing filter

www.manaraa.com

191

considerably in error for any given row. Only when the measurements are

averaged do they begin to reasonably approximate the true feature size.

2) The value of |a.f(pre) stays quite close to the actual feature size until the SNR

drops below about 0.5; as SNR decreases further, pf(pre) begins to increase

rapidly.

3) The value of <Jf(post)
is generally smaller than that in the pre-processed

images, and is especially so as SNR decreases. For SNR larger than about 5,

the filter does not appear to improve the feature size estimate.

4) The value of M-f(Post) stays much closer to the actual feature size than Pf(pre)

at low SNR. However, there are small fluctuations in |if(p0st) about actual

feature size as SNR decreases.

Figure 7.4 is a plot of measured size vs. SNR for the modified adaptive

smoothing filter. It may be seen that the above observations about Figure 7.3

apply to Figure 7.4 as well. In fact, the behavior of the graphs of measured

size vs. SNR for pre-processed and post-processed images is qualitatively very

similar for all of the noise filters used in this study; the differences between

these filters in terms of influence on measured feature size are mostly

quantitative. Figure 7.5 compares measured size vs. SNR for the adaptive

smoothing filter and modified adaptive smoothing filter.

www.manaraa.com

192

Modified adaptive smoothing filter w/7x7 window; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.4. Measured size vs. SNR for the modified adaptive smoothing filtei

www.manaraa.com

193

Comparison of adaptive smoothing filters
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.5. Measured size vs. SNR for adaptive and modified adaptive smoothing
filters

www.manaraa.com

194

7.2.2 Kalman Filter

The Kalman filter is an optimal linear filter for recursively separating

two random processes which may have overlapping spectral density

functions. In the Kalman filter formulation, one random process usually

represents the signal of interest while the other represents unwanted

measurement error. The random processes are formulated in a state vector

representation and the mean square error is minimized, resulting in a

recursive algorithm which constitutes the Kalman filter. The reader is

referred to Brown (1983) for a well-written introduction to Kalman filtering

theory. The Kalman filtering routine presently in HAPPI was translated from

the one used in Safae-nili’s (1989) thesis; Safae-nili’s Kalman filter routine

was based on the work of Biemond (1983, 1986). In this filter, the random

process representing the signal is modeled as an AR(1) process in both the

horizontal and vertical direction. The filter models not only degradation from

noise but also blur, which may be caused by the imaging system used to create

the image. The imaging system blur is modeled as a 2-d circularly symmetric

gaussian function. Both pre- and post-blur noise are modeled. The input

parameters for HAPPI’s Kalman filtering routine and their meaning are listed

in Table 7.1 (note: PSF stands for Point Spread Function). For the experiments

in this study, the parameter values used were as listed in Table 7.2. The

parameter PZero was set equal to the value of the noise variance in each test

image. The parameters RhoH and RhoV were set to the relatively high value of

0.9 to reflect the nature of the test image feature; since the feature was of a

www.manaraa.com

195

Table 7.1. Parameters of HAPPI’s Kalman filter

Parameter
RhoH
RhoV
SigmaU
SigmaW
PZero
Beamsize
Beamvariance

Meaning
Horizontal correlation coefficient of signal process
Vertical correlation coefficient of signal process
Standard deviation of pre-blur noise
Standard deviation of post-blur noise
Initial error estimate (see Brown (1983) for theory)
Length of one side of imaging system’s gaussian blur PSF
Variance of imaging system’s gaussian blur PSF

Table 7.2. Kalman filter parameter values used

Parameter Value
RhoH 0.9
RhoV 0.9
SigmaU 0.001
SigmaW 1.0
Beamsize 3
Beamvariance 0.1

single, constant grey level, its pixels are very highly correlated. In this

Kalman filter routine, it turns out that if the ratio of SigmaU to SigmaW is very

small, the filter will primarily smooth noise, while if this ratio is large, the

filter will primarily do deblurring of the gaussian imaging system PSF.

Because our test images are not intended to model imaging system blur, we

chose values of SigmaU and SigmaW which made the ratio SigmaU/SigmaW

small, so that the filter would only filter noise. The values of Beamsize and

Beamvariance were also chosen to be the smallest values allowed by the

current implementation of the routine so as to deemphasize the deblurring

action of the filter. The current implementation of HAPPI’s Kalman filter only

accepts square images whose dimensions are integer powers of two. Figure 7.6

www.manaraa.com

196

is a graph of measured size vs. SNR for the Kalman filter. Note that the graph

has the same general characteristics as those of the previous subsection.

However, the Kalman filter, as run with the above parameter values, did not

perform quantitatively as well - with respect to measured feature size - as the

adaptive smoothing filter of the previous subsection. In a subsequent

subsection, the performance of all of the noise filters is compared.

Kalman filter; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.6. Measured size vs. SNR for the Kalman filter

www.manaraa.com

197

7.2.3 Median Filter

The median filter is a nonlinear filter which is good for suppressing

impulsive noise while preserving edges. This filter simply moves a window

through the image and replaces the pixel at the center of the window with the

median of all the pixels in the window. HAPPI contains two median filtering

routines. The first routine, called simply the “median filter” performs just the

algorithm described above, and is implemented using the fast algorithm of

Ahmad (1987). This routine takes as its only parameter the size of the window

in which the median is computed. The second routine is called the “weighted

median filter,” and takes a center pixel weight parameter as well as a window

size parameter. To compute the median of a set of numbers, the set is ranked in

ascending or descending order, and, for a set with an odd number of elements,

the middle value in the ranking is identified as the median; for an even

number of elements, the median is computed as the average of the two middle

values in the ranking. In the weighted median filter, the pixel at the center of

the filter window is replicated in the ranking used to find the median. The

value of the center pixel weight parameter is the number of times the center

pixel is replicated. The weighted median filter thus has increased likelihood

that the center pixel in the filter window will be selected in the computation of

the median. For consistency of window size with other routines and for

purposes of having a “good” sample size, a 7x7 window was used in both the

median and weighted median filters in our tests. The center pixel weight in

the weighted median filter was set to 10, which is about 20% of the sample size

www.manaraa.com

198

of 49 obtained with a 7x7 window. Also, a 15x15 window was tried with the

median filter. Figure 7.7 is a graph of measured size vs. SNR for the median

filter using a 7x7 window; Figure 7.8 shows measured size vs. SNR for the

median filter using a 15x15 window.

Median filter w/7x7 window; image: slO.l.i
Measured site, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.7. Measured size vs. SNR for median filter with 7x7 window

www.manaraa.com

199

Median Alter w/15xl5 window; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

7.8. Measured size vs. SNR for median filter with 15x15 window

www.manaraa.com

200

Note that the median filter’s performance with a 15x15 window is

slightly better than its performance with a 7x7 window. Figure 7.9 shows

measured size vs. SNR for the weighted median filter using a 7x7 window and a

center pixel weight of 10. The performance of the weighted median filter is

Weighted median; 7x7 window, weight=10; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.9. Measured size vs. SNR for weighted median filter

www.manaraa.com

201

slightly worse than that of the regular median filter with the same window

size. The performance of the median and weighted median filters from Figures

7.7, 7.8, and 7.9 is compared in Figure 7.10 (note that only measured size of

post-processed images is plotted in this graph).

Median filter: 7x7,15x15, weighted 7x7
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

(a)

Figure 7.10. Comparison of measured size performance of median filter with
two window sizes and weighted median filter (a) Plot of full SNR
range tested

www.manaraa.com

202

Median filter: 7x7,15x15, weighted 7x7
Measured size, pixels

0.00 0.50 1.00 1.50 2.00

(b)

Figure 7.10. (cont’d) (b) Enlargement of portion of (a) from SNR=0 to SNR

www.manaraa.com

203

7.2.4 Root Filter

The root filter is a nonlinear filter defined by the equation (Jain, 1989,

p. 291):

f/(coi,co2) = IVlaexp{j0v} (7.6)

where v(x\,X2) is the input image, u(x\,X2) is the output image, V^co 1,(02) and

U(to 1,(02) are the Fourier transforms of v(xi,X2) and u(x\,X2)> respectively, and

j is the imaginary operator. This filter operates by taking the Fourier

transform of the input image, forming the magnitude and phase of the

resulting frequency-domain data, and raising the magnitude to the power a

while leaving the phase unchanged. The transformed frequency-domain data

is then inverse Fourier transformed to yield the spatial-domain output image

u(xi,X2)- Using a value of a less than one makes the root filter behave like a

high-pass filter, while a value of a greater than one results in a low-pass filter

effect. It was found that values of a greater than about 3.5 introduced artifacts

in the root filtered image and greatly distorted the image feature. A value of

2.5 was used for a in all processing done with the root filter. Figure 7.11 shows

measured size vs. SNR for the root filter. It may be seen from Figure 7.11 that

the mean feature size of the post-processed image p.f(p0st) has a slight dip in it

at SNR=0.33. The graphs for other processing routines have similarly

nonmonotonic behavior of pf(post) at low SNR, as may be seen, for example,

from Figure 7.10(b), but this behavior seems to be more pronounced for the

root filter.

www.manaraa.com

204

Root filter w/exponent=2.5; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.11. Measured size vs. SNR for root filter

www.manaraa.com

7.2.5 Sigma Filter

HAPPI’s sigma filter is based on the paper by Lee (1984). The sigma

filter determines the rms value, o, of the pixel intensities within a moving

window, and averages all pixels whose intensities fall within ± 2a of the

intensity of the center pixel in the window. The average thus computed is

assigned to the center pixel in the window. To calculate the rms value of pixel

intensities in the window, the filter first forms the first difference of the

input image. As the window moves through the input image, a corresponding

window of the same size is moved through the first difference image, and the

rms value a is calculated as the standard deviation of the first difference

image’s pixels in the window. The filter may be applied repeatedly to an

image. The sigma filter takes two parameters, the number of passes, and the

window size. The number of passes parameter determines how many times the

filter is applied to the image. The window size parameter is simply the length

of one side of the square window in which the value of a is computed and

pixels in the - 2a range are averaged. For all images processed with the sigma

filter, a window size of 7x7 was used, and the number of passes was set to 1.

Figure 7.12 shows measure size vs. SNR for the sigma filter. It may be seen

from Figure 7.12 that the graph behaves qualitatively like the other graphs

for the previously discussed noise filters.

www.manaraa.com

206

Sigma filter w/7x7 window; image: slO.Li
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.12. Measured size vs. SNR for sigma Filter

www.manaraa.com

207

7.2.6 Lowpass Filter

A uniform-weight lowpass filter was applied to the sequence of noisy

test images. This filter simply moves a window through the image and

replaces the pixel at the center of the window with an unweighted average of

all the pixels in the window. A 7x7 window was used for our tests, for

consistency with the window size used in the other filters. Figure 7.13 shows

measured size vs. SNR for the lowpass filter.

Low pass filter w/7x7 window; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.13. Measured size vs. SNR for lowpass filter with 7x7 window

www.manaraa.com

208

The graph of Figure 7.13 behaves much the same as those for the noise filters

of the previous subsections at values of SNR below about 4.0. Note, however,

that at higher SNR values, the feature size estimate for the post-processed

images is slightly worse than that for the pre-processed images. This behavior

is likely attributable to the relatively low values of blur parameter used in the

program rowblur for images with SNR’s of 5 and 10 (refer back to Table 6.1).

Recall that these values were obtained from the sequence of pre-processed

images under the tacit assumption that they would be more than adequate for

post-processed images.

Unlike the noise filters of the previous subsections, the lowpass filter is

not designed to keep edges sharp in an image. When the lowpass filter is

convolved with the 2-6 pulse of Figure 6.1, the output image is a 2-d trapezoidal

pulse. A 1-d slice through the trapezoidal pulse will then be a 1-d trapezoidal

pulse, which will have a finite, constant slope in an interval about an edge

location, as shown in Figure 7.14.

Figure 7.14. One-dimensional trapezoidal pulse obtained by taking 1-d slice
from convolution of square-edge pulse with uniform-weight
lowpass filter

www.manaraa.com

209

Under the “gradient maximum” definition of edge location then, the edge

location is ambiguous for such a trapezoidal pulse. Convolution of the

trapezoidal pulse with a gaussian smoothing function, provided the width of

the smoothing function is not too small compared to the dimension W1 in

Figure 7.14 but is smaller than half the dimension W2 in Figure 7.14, will yield

a pulse with smoothed edges of non-constant slope, for which the edge

locations will no longer be ambiguous under the gradient maximum edge

definition. The post-processed images from the lowpass filter were run

through rowblur with slightly higher values of blur parameter than the

nominal values of Table 6.1, and the feature size estimate for the post-

processed images was seen to improve to be at least as good as that for the pre-

processed images at high SNR values.

7.2.7 Comparison of Noise Filters and Overall Characteristics

In Figure 7.15, we compare the performance of all of the filters in

Subsections 7.2.1 through 7.2.6. Since the feature size data for pre-processed

images were the same for each filter, only feature size of post-processed

images is plotted here for purposes of comparison between filters. It is clear

that there is a strong dependence of af(p0st) on SNR, with ctf(Post) dramatically

decreasing as SNR increases over the range 0.25 to about 2.0. For an SNR (of

pre-processed images) above about 2.0, measured feature size in post-processed

images is about the same for all of the filters (except for the anomalous

behavior of the lowpass filter seen in Figure 7.13 at high SNR values), and has

www.manaraa.com

210

a mean very close to the actual feature size of 101 pixels and a standard

deviation of about one pixel. Below SNR=2.0, the various filters, with the

exception of the root filter, manage to keep the mean feature size close to the

actual size, but with small fluctuations about the mean. The main difference

between most of the noise filters then seems to be in their effect on the

standard deviation of the feature size estimate, (Jf(post)- We recognize that

lower values of af(p0st) are associated with higher values of SNR, so the data

plotted in Figure 7.15 are also an indirect measure of how the various noise

filters raise SNR. In all the graphs of measured size vs. SNR in Subsections

7.2.1 through 7.2.5, the value of cTf(p0st) is less than that of af(pre) at all values

of SNR, by anywhere from a few percent at high SNR’s to 300% low SNR’s. This

is intuitively satisfying, as it indicates that all of these noise filters serve to

raise the SNR of the input image, yielding an improved feature size estimate.

The reader may have noted the anomalous behavior of the root filter in

Figure 7.11. In Figure 7.16, we plot the same information as in Figure 7.15 but

with the data set for the root filter removed. From Figure 7.16 we may clearly

see that the Kalman filter has the worst feature size performance (i.e. highest

standard deviation of feature size), followed by the sigma Filter. We also note

that the Kalman filter has the worst feature size bias (i.e. magnitude

difference between estimated mean feature size and actual feature size), at

about 5 pixels, at the lowest SNR value tested. It is of interest that the output

images from the Kalman filter appeared to have more sharply defined edges

than those from the median filter, which looked mottled at low SNR values. In

spite of a visual appearance of better output image quality from the Kalman

filter, the programs used in this study to measure edge location and feature

www.manaraa.com

211

Comparison of various noise filters
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

(a)

Figure 7.15. Comparison of various noise filters (a) All filters; full range of
SNR plotted

www.manaraa.com

212

Comparison of various noise filters
Measured size, pixels

Adap smooth

T^aiman

T-owp 7x7

Tvied 7x7

Med "15x15

TvlodAdapSmooth

Root;exp=2.5

Sigma 7x7

Vt Med 7x7;10wt
a
Actual Size

SNR
0.00 0.50 1.00 1.50 2.00

(b)

Figure 7.15. (cont’d) (b) Selected filters; full range of SNR plotted

www.manaraa.com

213

Comparison of various noise filters
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

(c)

Figure 7.15. (cont’d) (c) All filters; range from SNR=0.0 to SNR=2.0 plotted

www.manaraa.com

214

Comparison of various noise filters
Measured size, pixels

Adap smooth

Caiman

l-owp 7x7

Tvied 7x7

Hoot;exp=2.5

Tigma7xT ~

Actual Size

SNR

(d)

Figure 7.15. (cont’d) (d) Selected filters; range from SNR=0.0 to SNR=2.0 plotted

www.manaraa.com

215

Comparison of various noise filters
Measured size, pixels

0.00 0.20 0.40 0.60 0.80 1.00

(a)

Figure 7.16. Comparison of noise filters without root filter (a) All filters except
root; range from SNR=0.0 to SNR=1.0 plotted

www.manaraa.com

216

Comparison of various noise filters
Measured size, pixels

Adap smooth

T^aiman

towp 7x7

faedfx?’"
Sigma TxT ~

Actual Size

SNR

(b)

Figure 7.16. (cont’d) (b) Selected filters without root filter; range fror
SNR=0.0 to SNR=2.0 plotted

www.manaraa.com

217

size in an objective, repeatable, and statistically meaningful way found the

Kalman filter to have significantly poorer performance than other faster and

less sophisticated algorithms. The adaptive smoothing filter, lowpass filter,

and median filter with 7x7 window all have a standard deviation of feature size

lower than those for the Kalman and sigma filters, and among themselves are

fairly close in feature size performance. The median filter with 15x15 window

has the very lowest standard deviation of feature size of all the filters.

The measurements presented graphically in Section 7.2 above are

tabulated in Table 7.3 for reference. The numbers without parentheses are the

mean feature size, and the numbers in parens are the corresponding standard

deviation of feature size. The numbers across the top of the table are the SNR

values of the pre-processed images, and the first row of mean and standard

deviation data is for the pre-processed images. In the far right column, the

execution time of each routine on the Stellar GS1025, as carefully timed with a

stopwatch, is listed.

We see from the table that at the lowest SNR level used in this study

(SNR=0.25), the standard deviation of post-processed feature size for the

Kalman filter was about 78% higher than that for the median filter with a 7x7

window, and almost 100% higher than that for the median filter with a 15x15

window. We also note that the execution time of the Kalman filter is about 36

times that of the median filter with a 7x7 window. Clearly, at least within the

domain of the idealized images studied here, the median filter gives the best

feature size estimate while simultaneously having the fastest execution time.

The other two filters with feature size estimation performance close to that of

the median filter, namely the adaptive smoothing filter and the lowpass filter,

www.manaraa.com

218

Table 7.3. Mean and standard deviation of feature size for pre- and post-
processed images

Routine

SNR Proc.
time,

0.25 0.33 0.5 1.0 1.5 2.0 5.0 10.0 mm:ss

Pre-
processed
images

118.9
(39.10)

110.3
(32.02)

102.2
(25.68)

101.1
(7.272)

100.9
(3.693)

101.0
(2.145)

101.2
(0.712)

101.0
(0.678)

N/A

Adaptive
Smoothing
Filter

101.9
(15.60)

100.6
(11.74)

101.3
(8.714)

101.3
(1.914)

100.9
(1.174)

101.2
(0.802)

101.2
(0.673)

101.0
(0.679)

04:17

Kalman
Filter

105.9
(25.67)

101.5
(19.13)

101.4
(11.16)

100.9
(2.854)

100.8
(1.273)

101.1
(0.757)

101.8
(0.434)

101.0
(0.630)

19:07

Median
Filter
7x7

99.67
(14.43)

99.31
(11.39)

101.0
(8.662)

100.9
(2.262)

100.9
(1.045)

101.0
(0.656)

101.1
(0.707)

100.7
(0.693)

00:32

Median
Filter
15x15

103.2
(12.85)

101.3
(8.918)

100.8
(5.962)

100.2
(1.712)

101.0
(0.731)

101.1
(0.749)

101.1
(0.612)

100.6
(0.733)

00:54

Mod. Adapt.
Smoothing
Filter

100.4
(13.47)

100.4
(11.47)

101.9
(8.337)

100.9
(2.282)

100.8
(1.158)

101.0
(0.877)

101.2
(0.703)

101.0
(0.689)

03:17

Root
Filter

111.9
(17.23)

108.3
(13.36)

112.3
(5.390)

105.1
(1.503)

102.0
(0.928)

101.5
(0.614)

101.3
(0.660)

100.0
(0.00)

02:50

Sigma
Filter

102.8
(21.94)

101.2
(16.19)

102.2
(9.373)

101.0
(2.502)

100.7
(1.306)

101.0
(0.956)

101.2
(0.721)

100.9
(0.710)

07:06

Weighted
Median
Filter

100.3
(16.93)

99.94
(13.57)

101.0
(8.250)

100.9
(2.643)

100.8
(1.083)

100.9
(0.802)

101.0
(0.689)

101.0
(0.660)

10:10

Lowpass
Filter
7x7

100.5
(13.70)

101.7
(12.39)

101.6
(9.04)

101.4
(1.861)

100.9
(0.943)

101.0
(0.748)

100.8
(1.493)

99.31
(2.158)

01:35

www.manaraa.com

219

have execution times respectively 800% and 300% slower than that of the

median filter.

7.2.8 Histogram Equalization

As its name implies, the histogram equalization algorithm attempts to

equalize (i.e., make uniform) the histogram of the input image. This algorithm

is a contrast enhancement tool, and not a noise filter. Unlike the filters of the

previous subsections, histogram equalization is a point transformation - each

pixel is transformed by the same function, and the values of its neighboring

pixels have no influence on its transformed value. The transformation

function for histogram equalization is simply the cumulative distribution

function for the image. The reader is referred to Gonzalez and Wintz (1987, p.

146) and Jain (1989, p. 241) for further details. HAPPI’s histogram equalization

routine takes no parameters. Figure 7.17 shows measured size vs. SNR for

HAPPI’s histogram equalization routine. It may be seen from Figure 7.17 that

at SNR’s below about 1.0, histogram equalization has little effect on the feature

size estimate. However, at higher SNR’s, the feature size estimate for post-

processed images is far worse than that for pre-processed images. This is due

to the fact that for test images with high SNR, histogram equalization greatly

increased the noise variance without increasing the signal strength by nearly

as much. At high SNR values, the histograms of the pre-processed test images

were strongly bimodal, with the histogram data tightly clustered about the two

modes, and with one mode strongly dominating. When such a histogram is

equalized, the histogram data representing the noise tends to get spread out by

www.manaraa.com

220

a much larger factor than the data representing the clean signal; the result is

a dramatic decrease in SNR, which in turn degrades feature size estimate.

Figure 7.17 shows the histograms of a test image with an SNR of 10 and the

histogram-equalized version of the test image. From Figure 7.16 we can

conclude that for purposes of edge detection and feature size measurement in

noisy images, histogram equalization does not effect any improvement.

Histogram equalization; image: slO.l.i
Measured size, pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.17. Measured size vs. SNR for histogram equalization

www.manaraa.com

221

(a)

(b)

Histogram of image: sl0n5.1.i
Frequency x 1(P

Histogram of image: sl0n5.2.i
Frequency x 1(P

; I I I I I I Histogram
20.00 i—

Figure 7.17. Histogram equalization results (a) Histogram of original test image
with SNR = 10.0; (b) Histogram of histogram-equalized image from
(a)

www.manaraa.com

222

7.2.9 Contrast Stretching

HAPPI’s contrast stretching routine, “Expand Grey Level,” found under

the Contrast Enhancement menu, does a simple remapping of individual pixel

grey levels. Like histogram equalization, it is a point transformation. The

routine takes two parameters, an upper and a lower grey level. All image data

below the lower grey level is mapped in the output image to grey level zero;

image data above the upper level is similarly mapped to grey level 255, the

maximum grey level in HAPPI’s image format. All image data falling between

the upper and lower grey levels is remapped to the 0-255 grey level range in a

linear fashion. The transformation may be written as:

y(i,j) = (x(i,j)-a)*255/(P - a); a < x(ij) < P (7.7.1)

y(i,j) = a; x(i,j) < a (7.7.2)

y(i,j) = P; x(i,j) > P (7.7.3)

where y(i,j) is the output image, x(i,j) is the input image, and p and a are the

upper and lower grey levels, respectively. In our tests, we used an upper grey

level of 150 and a lower grey level of 100, equal to the grey levels of the

foreground and background, respectively, in our original noiseless test image.

Figure 7.18 shows measured size vs. SNR for the contrast stretch routine. From

the figure, we may see that contrast stretching has almost no effect on the

feature size estimate of the post-processed image. Table 7.4 lists feature size

mean and standard deviation data for histogram equalization and contrast

stretching in the same format as Table 7.3.

www.manaraa.com

223

Contrast stretch; image: slO.l.i
Measured si». pixels

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7.18. Measured size vs. SNR for contrast stretch routine

www.manaraa.com

224

Table 7.4. Mean and standard deviation of feature size for histogram
equalization and contrast stretch

Routine SNR Proc.
time,

mm:ss 0.25 0.33 0.5 1.0 1.5 2.0 5.0 10.0

Pre-
processed
images

118.9
(39.10)

110.3
(32.02)

102.2
(25.68)

101.1
(7.272)

100.9
(3.693)

101.0
(2.145)

101.2
(0.712)

101.0
(0.678)

N/A

Histogram
Equalization

113.9
(39.81)

107.3
(30.76)

101.3
(24.88)

102.4
(8.805)

102.2
(5.969)

104.3
(11.42)

246.6
(88.75)

243.4
(92.33)

00:08

Contrast
Stretch

m.i
(35.55)

110.7
(35.02)

102.7
(27.58)

101.6
(9.206)

101.0
(5.006)

100.9
(1.547)

101.1
(0.718)

101.0
(0.661)

00:09

7.3 Effects of Scattering LSF

In an actual radiograph, we would not see perfect step edges like those

in our test images, even if the physical specimen from which the radiograph

was made had such a perfect edge. Even perfect step edges in the specimen

will be imaged on a radiograph with a certain amount of blur due to different

physical phenomena, such as scattering, geometric unsharpness, film

unsharpness, etc. Thus, while the measurements presented so far give a sense

of how well we can measure feature size and of how HAPPI’s processing

routines change the size of an idealized image feature, they are somewhat

removed from the results we would get with images of real radiographs. To

briefly investigate the effects of non-ideal edge profiles on edge location and

feature size measurement performance, we convolved a test image similar to

that of Figure 6.1 with a two-dimensional version of the line spread function

www.manaraa.com

225

of Equation 5.4, using various values of the scattering unsharpness parameter

a of that equation. The test image used in this case consisted of a uniform

background of grey level 100 with a uniform-width, uniform-intensity

vertical stripe of grey level 150 centered in the image, as shown in Figure 7.19.

Figure 7.19. Test image used to test effects of scatter unsharpness

www.manaraa.com

226

This test image could be considered a primitive model of a slot of

uniform cross-section in a flat plate. We used this test image instead of the

image of Figure 6.1 so that we could apply large 2-d scattering unsharpness

blur functions to it and still calculate valid edge location and feature size

statistics from row ensemble averages. Had we convolved the test image of

Figure 6.1 with a large 2-d version of the LSF of Equation 5.4, we would have

smeared the perfect step edges of that image in both spatial directions, and

would not have had a large sample size of 1-d image slices with identical

statistical properties from which to compute the mean and standard deviation

of edge location and feature size.

Noise was added to the blurred images in various amounts, and the

resulting blurred, noisy images were run through the program mrowblur to

generate plots of edge location mean and variance vs. gaussian blur

parameter, at,. The gradient maximum method was again used exclusively

when running mrowblur. A few selected range bar plots from mrowblur are

shown in Figure 7.20. We may observe the following from the plots of Figure

7.20:

1) As the scattering unsharpness parameter a of Equation 5.4 decreases, the

critical value of the gaussian blur parameter ab increases. (Refer to

Section 6.3.2 for a discussion of how critical <Jb values were determined

from range bar plots of edge location vs. ab-)

www.manaraa.com

227

Mean edge loc’ns +/-1 stddev vs blur for image: sl0s2nl00.1.i
Edge Location, pixels

(a)

Figure 7.20. Range bar plots of mean edge location — one standard deviation vs.
blur parameter for test images with scatter blur and noise (a)
SNR=0.5; scatter blur parameter a=0A

www.manaraa.com

228

Mean edge loc’ns +/-1 stddev vs blur for image: sl0s6nl00.1.i
Edge Location, pixels

(b)

Figure 7.20. (corn’d) (b) SNR=0.5; scatter blur parameter a=0.1

www.manaraa.com

229

Mean edge loc’ns +/-1 stddev vs blur for image: sl0s9nl00.1.i
Edge Location, pixels

440.00

420.00

400.00

380.00

360.00

340.00

320.00

300.00

280.00

260.00

240.00

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

60.00

1 —r \ 1 1 Left Edge Location
— 11 i j 1 rtt

Right Edge Location
— i j M f “ True Left Edge Location
- 1 1

• : t |
t — 1 •
J j t

True Right Edge Location

i; j | : ? • — j • 1111 j ; 4 : .jjjHj,
It | i 1 j i 11; !*!?.»,? T _

— ! : iilit illi11 i 11M i 1 i
«—f j- A 4 j- j- J {|.U^ it. *4 4 fj-Ui f t*

• ; • 1 i! i i l i j i U 1! i! 111 i i

—' 1 * 1 1— Blur parameter (sigma)
0.00 10.00 20.00 30.00 40.00

(C)

e 7.20. (cont’d) (c) SNR=0.5; scatter blur parameter a=0.04

www.manaraa.com

230

2) As the parameter a decreases, the terminal value of edge location standard

deviation <je (i.e. the almost constant value attained by <je as <Jb increases

beyond its critical value) increases as well.

The above two observations may be explained by considering the effect

of the parameter a on the size of the scattering unsharpness blurring

function; small values of a yield spatially large blurring functions, and vice

versa. A small value of a will thus result in more smearing of sharp edges.

When edges are detected using a gradient scheme such as the one we have used

in this study, a slowly rising edge will naturally be harder to locate precisely

in a noise field of a given strength than a sharply rising edge in the same

noise field.

To investigate the relationship between SNR and feature size estimation

performance in an image with blurred step edges, we blurred the test image of

Figure 7.19 with a 2-d version of the LSF of Equation 5.4, using an unsharpness

parameter of 0.2. Various amounts of noise were added to the blurred test

image to produce a sequence of test images of decreasing SNR similar to that

described in Section 6.3.1. The program mrowblur was run on this sequence of

test images to produce a sequence of range bar plots of edge location mean and

standard deviation vs. gaussian blur parameter ab- Critical Ob values were

determined from the sequence of range bar plots in the same way as described

in Section 6.3.2.

The critical <Tb values for the blurred test image are shown in Table 7.5.

Note that at high SNR’s the critical ab values are somewhat higher for the

blurred test image than those for the test image with perfect step edges (Cf.

www.manaraa.com

231

Table 6.1). The higher ab values seen with the blurred image is most likely due

to the fact that to a gradient operator, a slowly rising edge bathed in noise of a

given strength has a lower signal-to-noise ratio than a step edge bathed in

noise of the same strength. Thus, it was neccessary to use slightly larger ab

values with the blurred test image to reduce the heightened effect of noise on

edge location estimate. At lower SNR’s, the critical ab values are slightly lower

than the corresponding values in Table 6.1, but the percentage difference of

ab between the two tables at low SNR is small.

Table 7.5. Critical values of blur parameter as function of SNR for blurred test
image

Test image SNR
10.0
5.0
2.0
1.5
1.0
0.5
0.33
0.25

Critical value of ab
1.0
2.0
5.0
7.0
10.0
22.0
28.0
33.0

To investigate how HAPPI’s noise filters might fare in improving

feature size estimate in an image with blurred step edges, we ran the adaptive

smoothing filter on the sequence of noisy blurred test images created from the

test image of Figure 7.19. The critical ab values of Table 7.5 were fed as input to

the rowblur program to determine mean and standard deviation of feature size,

and the pre-processed and post-processed size estimates were plotted as a

www.manaraa.com

232

function of SNR as shown in Figure 7.21. Note that at high SNR’s the standard

deviation of feature size for the blurred pre-processed image is much larger

(at about 5 pixels) than that for the pre-processed images in Section 7.2, due to

the gradient operator having to search for a weaker (and thus harder-to-

locate) signal.

Median filter w/7x7 window; image: c8s4.1.i; a=0.2
Measured size, pixels

Vre-processed

l?ost-processed
<A~ctuaf Size

SNR

Figure 7.21. Measured size vs. SNR for adaptive smoothing filter and blurred
test image

www.manaraa.com

233

7.4 Comparison of Edge Location/Feature Sizing Methods with Sobel Operator

To help put the edge location and feature size measurements of Section

7.2 in perspective, we also measured edge locations in pre-processed and post-

processed images by a simple “seat-of-the-pants” method that might be used

by an image processing practitioner. Our method was to simply apply HAPPI’s

Sobel edge detection routine to the same pre-processed and post-processed

images studied in Section 7.2, and use HAPPI’s “Pixel Analyzer” utility to find

the coordinates of edge points in the resulting Sobel-processed images. (The

Pixel Analyzer is described in Chapter 3, Subsection 3.3.3.) In Table 7.6, we list

feature size measurements as could best be determined by eye using HAPPI’s

Pixel Analyzer on Sobel-processed images; the table is similar in format to

Table 7.3, but does not list processing time for running the Sobel routine on

each post-processed image, as the routine’s processing time - approximately 50

seconds on the Stellar GS1025 - was identical for each 511x511 test image. The

numbers without parentheses in each table cell are the estimated feature sizes

(in pixels). The numbers in parentheses in each table cell are not computed

standard deviations of feature size as in Table 7.3, but are rather a subjective

visual estimate (made using the Pixel Analyzer) of the width, in pixels, of the

edge response in the Sobel-processed image.

It was seen that at high SNR’s, a user could quite reliably determine

feature size to within two or three pixels using the Sobel routine and the Pixel

Analyzer. However, at low SNR’s (below about SNR=1), the output of the Sobel

routine was so noisy as to make the image feature undetectable, and thus

unmeasureable, by eye. Poor performance of the Sobel routine at low SNR is to

www.manaraa.com

234

be expected, as the Sobel masks are only 3 pixels by 3 pixels square, and are

thus not capable of doing very much noise smoothing.

Table 7.6. Visually estimated feature size and edge response width using Sobel
routine and Pixel Analyzer

Routine
SNR

0.25 0.33 0.5 1.0 1.5 2.0 5.0 10.0

Pre-
processed
images

' ' ' '

101
(2)

101
(2)

101
(2)

101
(2)

Adaptive
Smoothing
Filter

■ ■ ■ too
(2)

100
(2)

101
(2)

101
(2)

101
(2)

Kalman
Filter

- - - 101
(3)

101
(3)

101
(3)

101
(3)

101
(3)

Median
Filter
7x7

102
(15)

101
(12)

101

(ID

101
(2)

101
(2)

Median
Filter
15x15

102
(14)

101
(12)

101
(12)

101
(2)

101
(2)

Mod. Adapt.
Smoothing
Filter

■ ' ■

100
(2)

100
(2)

101
(2)

101
(2)

101
(2)

Root
Filter

- - - 101
(2)

101
(2)

101
(2)

101
(2)

101
(2)

Sigma
Filter

- - - 101
(4)

101
(3)

101
(2)

101
(2)

101
(2)

Weighted
Median
Filter

101
(3)

101
(3)

101
(3)

101
(2)

101
(2)

www.manaraa.com

235

CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

8.1 Summary

In this thesis, we have described and evaluated HAPPI, an integrated

NDE X-ray image processing software package to which the author was a

contributor. Contemporary issues in image processing were discussed to lend

some perspective to HAPPI’s design and features, and the design objectives

were set forth. Our evaluation of the finished product concentrated on ways in

which it could be improved. A detailed, step-by-step procedure for extending

the image processing functionality of HAPPI was given. This procedure

includes an overview of such things as program control flow and data objects,

and provides documentation that was previously missing or incomplete. The

procedure will allow any competent C programmer to add processing routines

to the program, and is intended to encourage the continued maintenance and

development of the program.

In the latter part of the thesis, we have investigated the influence of

HAPPI’s image processing routines on image feature size. Methods of edge

detection and feature size calculation were presented. In the presence of

noise, such calculations will be random variables. Our measurement methods

have been implemented so as to quantify the randomness of the

measurements. The measurement methods were applied to idealized images of

simple specimen geometries to get a sense of the limits of measurement

accuracy under ideal circumstances. Test images processed with a variety of

HAPPI’s routines were measured before and after processing, with the results

www.manaraa.com

236

providing some quantification of how various processing routines affect

feature size estimates. The measurements presented show that, in our test

cases at least, HAPPI’s noise filters improved the feature size estimate. Other

processing routines that were not intended as noise filters were tested and

found not to improve, and in fact to worsen in some cases, the feature size

estimate.

In general, for noisy unprocessed images and noisy images processed

with HAPPI’s noise filtering routines, the standard deviation of our feature

size estimate was large (e.g., 60% of feature size for an unprocessed noisy

image and 20% to 30% for processed images) at low SNR (e.g., SNR=0.25) values,

and decreased dramatically as SNR increased to about 2.0. For SNR values in

the range 0.25 to 2.0, HAPPI’s noise filters improved the standard deviation of

feature size estimate by anywhere from few percent at high SNR’s to about

300% at low SNR’s. Above an SNR of 2.0, the standard deviation of feature size

estimate was essentially unchanged by processing. It was seen that among the

noise filters, the median filter provided the best feature size estimate at low

SNR’s while also having the fastest execution time. The Kalman filter gave the

worst feature size estimate while also having the longest execution time.

The effect of blurred edges on the feature size estimate was briefly

investigated. It was seen that more slowly rising edges require a larger blur

parameter to be used in our edge detection scheme. Also, slowly rising edges

bathed in noise of a given strength had higher edge location variance than

sharply rising edges bathed in the same noise field. Finally, it was seen that

for an image with blurred edges, noise filtering can significantly improve the

standard deviation of feature size estimate at SNR values above SNR=2.

www.manaraa.com

237

Results from our edge location and feature size measurement scheme

were compared with those attainable from a simple and subjective approach

using the Sobel operator. For SNR’s above about 1.0, the two methods yielded

similar results. Our scheme showed its utility at SNR values below 1.0; the Sobel

operator could not produce any edge location information at such low SNR

values.

8.2 Suggestions for Further Work

As suggestions for improvement to HAPPI have already been made in

Chapter 3, we will here discuss only suggestions for further work in

quantifying the effect of processing routines. There are many parameters

(e.g., contrast, noise levels, noise distributions, feature edge profile) which

may be varied in test images for feature size measurement, and the various

processing routine parameters may be varied as well. There are also many

more methods of finding edges than are discussed in this thesis. There is thus

a large multidimensional space to explore in investigating the topic of

“influence of processing algorithms on feature size,” and the work presented

here could be extended in many directions.

One possible topic of investigation is the optimization of filter

parameters for purposes of edge detection and feature size estimation. Optimal

parameters for a given filter will depend on such image characteristics as

SNR, contrast, feature edge profile, and feature size. We saw in Chapter 6 that

in general, the lower the SNR in an image, the larger the blurring function

needed to achieve a given edge location performance. However, in practice we

www.manaraa.com

238

cannot increase the size of the blurring function without bound. If the

feature size is very small compared to the size of blurring function used, then

the feature will be smeared and peak signal strength will be diminished.

Blurring function size is also limited in practice by the size of the image being

blurred. There is thus an interaction between minimum detectable feature

size, SNR, image size, and the processing routines, which would be a useful

topic for investigation.

As mentioned in Chapter 6, it is hoped that the data presented in this

thesis might prove useful in developing analytical expressions or empirical

models for change in image feature size with processing. Such developments

would be useful, for example, to an NDE inspector concerned with accuracy of

flaw size measurements. The expressions or models could be used to judge the

size accuracy of alternative processing schemes against other concerns such

as detection accuracy, robustness with respect to variation in attributes of

input images, complexity of user interaction, and computational cost-

efficiency.

www.manaraa.com

239

BIBLIOGRAPHY

Ahmad, M. 0., and D. Sundararajan. "A Fast Algorithm for Two-Dimensional
Median Filtering.” IEEE Transactions on Circuits and Systems Vol. 34(11)
(1987): 1364-1374.

Bergholm, F. "Edge Focusing." IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 9(6) (1987): 726-741.

Biemond, J. "A Fast Kalman Filter for Images Degraded by Both Blur and
Noise." IEEE Transactions on Acoustics, Speech, and Signal Processing Vol.
31(5) (1983): 1248-1256.

Biemond, J. "Stochastic Linear Image Restoration." In Advances in Computer
Vision and Image Processing. Vol. 2, Image Enhancement and Restoration, ed.
T.S. Huang. Greenwich, Conn.: Jai Press 1986: 213-273.

Blagden, D., and J. Scanlan. "Rapid Prototyping for Imaging and Video
Design." Advanced Imaging (Nov. 1990): 43-45.

Brown, R. A., J. Xu, and J. P. Basart. "Software Design and Features for an NDE
Image Processing Workstation." In Review of Progress in Quantitative
Nondestructive Evaluation Vol. 9A, ed. D. O. Thompson and D. E. Chimenti. New
York: Plenum Publishing Corporation, 1990: 1073-1078.

Brown, R. G. Introduction to Random Signal Analysis and Kalman Filtering.
New York: John Wiley and Sons, 1983.

Canny, J. "A Computational Approach to Edge Detection." IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 8(6) (1986): 679-698.

Christian, K. The C and UNIX Dictionary. New York: John Wiley and Sons, 1988.

Clark, A. F. “The International Image Processing Standard - The Story so Far.”
In Proceedings of the ‘Image Processing and its Applications Conference.'
Savoy Place, London, UK: Institution of Electronic Engineers, 1992: 575-578.

Doering, E. R. "Detection of anomalies in digital images using pixel
classification." M.S. thesis, Iowa State University, 1987.

Doering, E. R. “Monthly Report.” See Iowa State University

Eizember, C. A., and W. A. Graeme. "Nondestructive Testing Meets Image
Processing." Advanced Imaging (Apr. 1990): 41-44.

Fishman, A., S. Wajnberg, A. Notea, and Y. Segal. "Extraction of Dimensions
from Radiographs." Materials Evaluation Vol. 39 (1981): 744-747.

www.manaraa.com

240

Frei, W. "Digital Image Processing Software." In Digital Image Processing.
Proceedings of SPIE, Vol 528. ed. A.G. Tescher. Los Angeles, Calif.: (Jan. 22-23,
1985): 88-94.

Gonzalez, R. C., and P. A. Wintz. Digital Image Processing. 2d ed. Reading, Mass:
Addison-Wesley, 1987.

Halmshaw, R. "Film Density and Contrast in Radiography." British Journal of
NDT (Nov. 1973): 187-188.

Halmshaw, R. "Defect Size Measurement by Radiography." British Journal of
NDT (Sep. 1979): 245-248.

Halmshaw, R. Non-Destructive Testing. London: Edward Arnold, 1987.

Hancock, L., and M. Krieger. The C Primer. New York: McGraw-Hill, 1986.

Haykin, S. Communication Systems. 2d ed. New York: John Wiley and Sons,
1983.

Iowa State University, Center for Advanced Technology Development. “X-Ray
Radiograph Image Analysis Program: Final Report.” U.S. Department of
Commerce Grant ITA 87-02, Ames, la.: Institute for Physical Research and
Technology, 1990.

Iowa State University, Electrical Engineering and Computer Engineering
Department, NDE Image Processing Group. “Monthly Report.” Ames, la.: Iowa
State University, May 1990.

Iowa State University, Electrical Engineering and Computer Engineering
Department, X-ray Image Processing Group. HAPPI Technical Manual, Vols. 1-
4. Ames, la.: Iowa State University, 1990.

Iowa State University, Electrical Engineering and Computer Engineering
Department, X-ray Image Processing Group. HAPPI User’s Manual. Ames, la.:
Iowa State University, 1990.

Jain, A. K. Fundamentals of Digital Image Processing. Englewood Cliffs, N.J.:
Prentice-Hall, 1989.

Kelley, A., and I. Pohl. A Book on C. Menlo Park, Calif.: Benjamin/Cummings,
1984.

Kemighan, B. W., and D. M. Ritchie. The C Programming Language. 2d ed.
Englewood Cliffs, N.J.: Prentice Hall, 1988.

Kuan, D. T., A. A. Sawchuck, T. C. Strand, and P. Chavel "Adaptive Noise
Smoothing Filter for Images with Signal-Dependent Noise." IEEE Transactions
on Pattern Analysis and Machine Intelligence Vol. 7(2) (1985): 165-177.

www.manaraa.com

241

Lee, J. S. “The Sigma Filter and Its Application to Speckle Smoothing of
Synthetic Aperture Radar Images.” In Statistics: Textbooks and Monographs.
Vol. 53, Statistical Signal Processing, ed. E.J. Wegman and J.G. Smith. New
York: Marcel Dekker, 1984: 445-459.

Mazor, B., ed. “Scientific/Industrial Imaging: An Industry/Technology
Roundtable.” Advanced Imaging (Aug 1990): 56-75.

Morgan, R., and H. McGilton. Introducing UNIX System V. New York: McGraw-
Hill, 1987.

Notea, A. "Evaluating Radiographic Systems Using the Resolving Power
Function." NDT International (Oct, 1983): 263-270.

Nye, A., and T. O’Reilly. X Toolkit Intrinsics Programming Manual for X
Version 11. Sebastopol, Calif.: O’Reilly and Associates, 1990.

O'Reilly, T. "The Toolkits (and Politics) of X Windows." UnixWorld (Feb. 1989):
66-72.

Paragon Imaging Inc. “Visualization Workbench” Lowell, Mass.: Paragon
Imaging Inc., 1989. product literature.

Pfeiffer, D. "The Case for the Embedded Imaging Approach." Advanced
Imaging (Oct. 1990): 36-40.

Pratt, W. K. Digital Image Processing. 2d ed. New York: John Wiley and Sons,
1991.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge
University Press, 1988.

Preston Jr., K. "Benchmarks for Image Processing." Advanced Imaging (May
1990): 30-38.

Safae-Nili, A. "A study of the effect of the media turbulence and data
processing in Fourier synthesis imaging." M.S. thesis, Iowa State University,
1989.

Scheifler, R. W., J. Gettys, and R. Newman. X Window System: C Library and
Protocol Reference. Bedford, Mass.: Digital Press, 1988.

Schwarz, R. “The Electronic Imaging Industry: Where We Stand.” Advanced
Imaging (Aug. 1990): 17-19,76.

Segal, Y. and F. Trichter. "Limitations in Gap Width Measurements by X-ray
Radiography." NDT International (Feb. 1988): 11-16.

Sheppard, L. M. "Detecting Material Defects in Real Time." Metal Progess (Nov.
1987): 53-60.

www.manaraa.com

242

Stellar Computer Inc. Stellar Graphics Supercomputer Model GS1000 System
Overview. Document MD-0001 Release 2.0, Newton, Mass.: Stellar Computer Inc.
1987.

Stellar Computer Inc. Stellar C Language User's Guide. Document MD-3201(a)
Release 2.0, Newton, Mass.: Stellar Computer Inc. 1988.

Stellar Computer Inc. Stellix Operating System Programmer's Guide. Document
MD-1004 Release 2.0, Newton, Mass.: Stellar Computer Inc. 1988.

Stephenson, T. "About PIK: The Programmer's Imaging Kernel Standard."
Advanced Imaging (Aug. 1990): 20-22,77.

Wallace, G. "The JPEG Still Picture Compression Standard." Communications of
the ACM Vol. 34(4) (Apr. 1991): 30-44.

X-ray Image Processing Group. HAPPI Technical Manual. See Iowa State
University

X-ray Image Processing Group. HAPPI User’s Manual. See Iowa State
University

Yencharis, L. “Imaging Markets: 1989 - 1994.” Advanced Imaging (Aug. 1990):
10-16.

Yenarchis, L. "Imaging Chip Overview ’91: Into the RISC-y ’90's." Advanced
Imaging (Oct. 1990): 23-26,77.

Zheng, Y., and J. P. Basart. "Image Analysis, Feature Extraction, and Various
Applied Enhancement Methods for NDE X-ray Images." In Review of Progress
in Quantitative Nondestructive Evaluation Vol. 7A, ed. D. O. Thompson and D. E.
Chimenti. New York: Plenum Publishing Corporation, 1988: 795-803.

www.manaraa.com

ivfJri
OT ;v *r r~

UNIVERSITY LIBRARY

	1-1-1992
	Image processing workstation software development and feature size measurement methods for NDE X-ray images
	Richard Ali Brown
	Recommended Citation

	tmp.1531506968.pdf.5Bt1M

