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CHAPTER 1: INTRODUCTION 

1.1 Overview of NDE 

Nondestructive Evaluation, or NDE, is the science of detecting and 

characterizing flaws in engineered materials, individual components, and 

final assemblies of manufactured items without damaging or destroying them. 

NDE is becoming increasingly important to modern society for reasons 

discussed below, and its importance is becoming increasingly recognized by 

industry, governments, and the public. The field is highly interdisciplinary 

in nature, and has no clearly defined boundaries. Its methods range from 

simple visual inspection by human eyes to the use of sophisticated energy¬ 

generating and sensing devices, the data from which may be fed through 

signal conditioning equipment to powerful computer systems for processing 

by algorithms based on theories in such diverse fields as optics, physiology, 

electrical engineering, artificial intelligence & neural networks, statistics, 

and computer science. 

NDE is important to modern society because of its roles in maintaining 

economic vitality and public safety. It has become widely discussed in recent 

years that the cost of servicing or replacing a defective manufactured item 

increases dramatically with the delay in manufacturing process between the 

time that defective components or materials are introduced into an assembly 

or sub-assembly and the time that the defects are found. When re-work is 

impractical or impossible on a defective finished item, significant amounts of 

economic, material, and labor resources are wasted by the inadequacy or 
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failure of components or materials representing a small fraction of the item’s 

total cost. Manufacturing process and product quality are increasingly cited 

as being crucial to economic competitiveness and vitality; NDE can make 

important contributions to attaining this quality. 

Modem society is dependent upon a wide variety of large, complicated, 

powerful, and potentially dangerous machinery such as airplanes, trains, cars 

and trucks, oil refineries, and nuclear power plants. Major malfunctions in 

this machinery can be catastrophic. Thus, the possibility of putting such 

machinery into service with potentially dangerous defects must be minimized. 

Destructive testing of samples of materials and components can tell a 

manufacturer something about the probability distributions of those 

materials' and components' properties (destructive testing of all materials and 

components would obviously result in nothing being manufactured). 

However, even though we may know these distributions accurately (and this is 

very seldom the case), we are still betting human lives on the odds that we 

calculate. A manufacturer of high-liability machinery must inspect as 

thoroughly as is practical every single critical component or piece of material 

used in every product that goes out the door; statistical outliers can not be 

tolerated. Also, because such machinery is inevitably affected by the 

enormous forces it generates and absorbs and the hostile environments in 

which it often serves, it is necessary to perform periodic inspections in the 

field; the purpose of these is to detect damage before it becomes critical and to 

predict remaining safe lifetime. The in-service inspection techniques must 

obviously be non-destructive in nature. In most cases, the design lifetime of a 

complex machine is highly empirical and is often "fudged", or extremely 
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conservatively estimated. The benefits of continued service from a machine 

and the cost of its replacement make it far more economical to continue with 

periodic inspections than to take the machine out of service simply because it 

is past its design lifetime. Since the destructive-testing-of-samples approach 

is unacceptable for high-liability machines, and because of the safety and 

economic benefits of in-service inspections, NDE techniques have become 

increasingly important for public safety. 

In general, an NDE inspection system consists of an energy source, an 

energy sensor (which may not necessarily sense the same kind of energy 

produced by the energy source), signal conditioning and analysis equipment 

(optional, depending on the application), and a display device. This is shown 

schematically in Figure 1.1. Conclusions about the specimen under test are 

drawn from the sensor measurements and an understanding of the interaction 

between the source energy and the specimen. The most widely used NDE 

methods may be distinguished by the energy sources they employ: 

electromagnetic, ultrasonic, and X-ray. Other methods include, but are not 

limited to, fluorescent dye penetrants, nuclear magnetic resonance, 

holography, and thermography. Often, as is the case with x-ray radiographic 

methods, a two-dimensional array of data, or image, representing a projection 

of the spatial distribution of some property of the specimen under test, is 

produced by the sensor. This image may be used by an inspector to visualize 

the size and location of a flaw within the specimen, and to determine its nature 

and severity. 
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Incident energy Transmitted, 

re-emitted, 
mode-converted, 
etc. energy 

Figure 1.1. General NDE inspection system 

1.2 Image Processing in NDE 

Image processing is the science of manipulating two-dimensional 

arrays of data for purposes of representation, storage, transmission, and 

extraction of information from the data. Image processing may be used to 

great advantage in NDE applications. The image formed by a sensor will 

typically contain both useful and useless information. "Useful" information is 

directly related to specimen properties we wish to measure; all other 

information produced by the sensor is useless "noise" and may hamper the 

perception and interpretation of the information of interest. The broad and 

interdisciplinary nature of NDE is due to the vast variety of materials (and 

their unique shapes and properties) that require inspection. Image 

processing techniques for NDE, in turn, are driven by this variety, and are 

consequently quite varied and specialized. No single processing algorithm or 

small group of algorithms can be regarded as generally applicable to all NDE 

image processing needs. 
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We may roughly divide image processing techniques into three levels of 

robustness: (1) qualitative enhancement, (2) quantitative measurement and 

estimation, and (3) automated flaw detection, classification, and measurement. 

At the simplest level are techniques which qualitatively enhance an image. 

These algorithms often are based on physiological considerations of human 

visual perception, and may or may not preserve the relationship between the 

specimen's physical properties and the image intensity level; their purpose is 

mainly to make it easier for a human inspector to locate suspicious areas in the 

image. Examples of such algorithms are thresholding, pixel inversion, 

histogram equalization, and adaptive histogram equalization. More robust, 

quantitative techniques of measurement and estimation may be employed 

when consistent and objective information is to be extracted from an image. 

The image is manipulated with well-defined mathematical operations, usually 

based on theory which respects the relationship between the image intensity 

and the specimen properties, and the result is often a well-defined quantity 

that is not open to different interpretations by different inspectors. Examples 

of such techniques are statistical noise filtering, stereographic flaw depth 

reconstruction, and some of the flaw sizing techniques used in this work. At 

the highest level, automatic flaw detection, classification, and measurement 

techniques attempt to mimic the experienced eye of the NDE inspector, using 

information from qualitative and quantitative analyses as input to higher- 

level algorithms based on pattern recognition principles. These techniques 

tend to be the most highly specialized and are developed for very specific NDE 

inspection situations. The work discussed in this thesis pertains to techniques 

at the first two levels of robustness discussed above, qualitative enhancement 
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and quantitative measurement and estimation. The reader is referred to the 

textbooks by Pratt (1991), Gonzalez and Wintz (1987), and Jain (1989) for a 

general introduction to image processing techniques. 

1.3 HAPPI: An Integrated NDE Image Processing Environment 

HAPPI is an integrated image processing software environment 

developed in the Electrical and Computer Engineering Department under 

sponsorship of the Center for Advanced Technology Development at Iowa State 

University. (HAPPI is an acronym for "Here's A Program for Processing 

Images".) The author was part of the group which produced HAPPI. Many of 

the image processing routines included in HAPPI were developed by the X-ray 

Image Processing Group in the Electrical and Computer Engineering 

Department at ISU, under sponsorship of the Center for NDE (also at 1SU). 

The functions provided in HAPPI include a large repertoire of image 

processing, measurement, and analysis routines, image data acquisition and 

image data management functions, macro-related functions, and various 

operating system access functions. The user interface is based on a graphical 

pointing device, in this case a mouse, and a set of graphical windows, or areas 

on the host computer's display screen which serve as I/O channels between 

the user and the program. 

The majority of this thesis deals with HAPPI's design. The finished 

package is evaluated with respect to several criteria and in the context of 

other commercially available image processing software. The contemporary 

image processing software development environment and its influence on 
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how HAPPI was written, as well as future trends in this development 

environment, is addressed. Also, the more salient design features of the 

software package are discussed, and in this context, a step-by-step procedure 

for compiling and linking new functions to HAPPI, with access to the 

functions through the HAPPI user interface, is given. The remainder of the 

thesis discusses the effects of HAPPI's processing routines on image feature 

size. 

1.4 Effects of Processing Routines on Feature Size 

It is for the designer to determine the size and types of flaws that can be 

safely tolerated by his/her design. Depending on a manufactured item's 

application and operating environment, a particular flaw may be perfectly 

harmless or may invite catastrophe. The designer considers these factors and 

his/her knowledge of the materials and components used in his design to 

arrive at an educated estimate of what constitutes a significant flaw. It is for 

NDE engineers and inspectors to provide measurements of a flaw's properties. 

The accuracy of these measurements must be sufficient for a rational course of 

action to be taken with respect to a suspected flawed component. 

In reviewing the NDE literature, it appears that there is not a standard 

set of methods for determining flaw sizes in x-ray radiographs, especially with 

digital imaging techniques. (The literature searched included most of the last 

decade or so of: NDT International, Journal of NDE, International Advances in 

NDT, Review of Progress in QNDE, British Journal of NDT, Soviet Journal of NDT, 

Research Techniques in NDT, and Materials Evaluation.) However, some of the 
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literature develops pertinent theory. A number of authors discuss the effects 

of various radiographic system parameters on attainable flaw size resolution 

and on the theoretical film density profile for certain simple flaw geometries 

(Fishman, et al., 1981), (Notea, 1983), (Segal and Trichter, 1988). Also, simple 

yet practical methods have been proposed for measuring flaw through¬ 

thickness dimensions (i.e., the flaw dimension perpendicular to the plane of 

the image) (Halmshaw, 1979). The theory and methods are not without their 

limitations, and have been developed using assumptions of rather ideal 

conditions. It is under the non-ideal image conditions of high noise, low 

contrast, and non-uniform background so often encountered in NDE 

radiography that image processing techniques are used to try to bring out 

information about a suspected flaw. 

Where image processing is used to improve an image, the processing 

may produce artifacts and/or distort the size of a flaw. In many images, the 

flaw information is mixed in with the noise in a way that does not allow 

complete separation of the two. Also, many robust signal processing methods 

that can produce very impressive results are heavily dependent upon the 

accuracy of estimates of signal and noise properties. When the property 

estimates are not accurate, results can be worse than those produced by less 

robust methods. 

In this work, we apply a simple set of size metrics to raw and processed 

images of simulated flaws, with the goal of assessing the effects of several of 

HAPPI's image processing routines on the measured size of image features. 

The metrics used represent reasonable, but not necessarily optimal, ways of 
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measuring flaw size. The effects of noise, flaw shape, and contrast are 

included in the study. 
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CHAPTER 2: CONTEMPORARY IMAGE PROCESSING TRENDS AND 

HAPPI’s DESIGN 

2.1 Introduction 

In this chapter, we put HAPPI in perspective by discussing the 

contemporary image processing software development environment in which 

it was written, as well as projected future trends in this environment. We 

touch on the need for and the state of software standards, and on current and 

projected hardware performance. The influence of these factors on how 

HAPPI was written is discussed. The general design objectives and top-level 

structure and functionality of HAPPI are laid out as foundation for the next 

two chapters. 

2.2 Contemporary Imaging Trends 

HAPPI was written at a time in which the image processing industry 

had yet to mature. At this writing, cost-effective commodity solutions to 

diverse and demanding industrial image processing problems are few and far 

between. In this section, we discuss the current and projected trends in 

hardware platforms and software standards that are important to the 

maturation of the image processing industry, as well as a sampling of 

contemporary image processing software packages. 
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2.2.1 Hardware Capabilities and Costs 

Digital image processing has been made practical by recent gains in 

computer hardware performance which have been driven by the advances in 

microcircuit integration made in the last couple of decades. At this writing, it 

is practical to perform rudimentary image processing operations on personal 

computer-based systems costing less than $10,000, and more compute-intensive 

image processing operations on graphics workstation-based systems in the 

$10,000 to $50,000 range. However, these systems by themselves may not 

always be adequate to satisfy the needs of an NDE radiographic inspection 

operation. A prerequisite for image processing is image digitization. The 

hardware needed to digitize radiographs at the high spatial and intensity 

resolutions required for critical applications is still cost-prohibitive for many 

potential users at this writing. A rudimentary digitization system, consisting 

of an imaging tube-based or charge-coupled-device- (CCD) based video camera, 

high-quality lens, camera stand, lightbox (for illuminating radiographs), and 

frame grabber (video signal digitizer) may be put together for $10,000 to 

$15,000. State-of-the-art image scanning devices with spatial resolution down 

to 25 microns and 8-bit intensity resolution currently are sold for $40,000 to 

$60,000; systems with 12-bit resolution for more demanding applications are 

priced yet higher. Also, increased image resolution means larger volumes of 

data to process, which leads to increased speed requirements (and thus 

increased cost) for the processing system to keep overall inspection times 

reasonable. Consequently, demanding applications still tend to be served by 
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special-purpose expensive hardware. One NDE radiograph image processing 

system receiving much attention at this time is the Scan IV system by DuPont. 

This system consists of a high-resolution (35 microns spatial resolution and 3.5 

decades light intensity dynamic range) digitizer, a workstation-class computer 

augmented by several add-on image processing boards, high-capacity (~2 

gigabyte), high-speed optical disk drives, a video signal digitizer for 

incorporating real-time video images into the system, 3 image display CRTs, 

and a high-resolution digital film recorder for film hardcopy output 

(Eizember, 1990). This system is presently sold for hundreds of thousands of 

dollars and reportedly requires several person-months of time to set up and 

get running. Other radiographic image processing systems have been 

developed at Ohio State University, the Army Materials Technology Laboratory, 

and the Electric Power Research Institute, among others (Sheppard, 1987). The 

high price of such systems keeps their sales volume low, and so high- 

performance radiograph image processing is presently not a commodity. 

Development of software products for these systems tends to proceed slowly, 

with custom work being done for each customer and with software not being 

portable between different high-end systems. There seems to be widespread 

agreement that the “traditional approach of using custom hardware and 

software to address the imaging applications has actually retarded the growth 

of new imaging technology by keeping prices high and not addressing the 

issue of standards conformity required to spur application development” 

(Pfeiffer, 1990, p. 36). 

The imaging industry has begun to respond to the difficulties presented 

by high-priced custom image processing systems. Pfeiffer (1990) argues that 
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the increasing availability of image data, the continued improvement in 

price-performance ratios of desktop computers, and emergence of software 

standards in the form of Application Program Interfaces (APIs), will lead to 

high-performance image processing capability being embedded in the 

workstations of the future, in much the same way that high-performance 

graphics capabilities have been integrated into current workstations. A 

tightly integrated “visualization environment” is foreseen wherein the image 

processing software development environment is but a part of a larger, 

comprehensive environment which includes high-level graphics tools and a 

customizable system-user interface. As of the early 90’s several major 

workstation vendors had in fact begun to embed image processing capability 

in their products (Yencharis, Oct. 1990), although some industry observers felt 

that some of these efforts were not yet very well thought out (Mazor, 1990). 

Considered particularly significant are the increasing appearance of DCT 

(Discrete Cosine Transform, used to compress image data for storage and 

transmission) chips in workstations and the widespread use of the Intel i860 

RISC processor in new parallel supercomputers (Mazor 1990). 

In the recent past and near future, those requiring a relatively modest 

image processing capability have and will continue to develop solutions by 

integrating hardware from various vendors and patching together application 

software from whatever development tools and libraries are provided with the 

hardware. Factors such as open computer bus architectures and graphics 

standards presently make development of such solutions a relatively easy task 

when performance requirements are not particularly demanding. However, 

until such time as the workstation “visualization environment” envisioned by 
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Pfeiffer develops and matures, commodity off-the-shelf systems will not be 

available to satisfy many of the diverse and often demanding applications in 

NDE image processing. 

2.2.2 Software Standards 

The image processing market has fallen short of expectations for the 

1980’s, according to industry observers (Yencharis Aug. 1990 and Oct. 1990, 

Schwarz 1990, and Mazor 1990). A primary reason for this is cited as being the 

lack of turnkey solutions (i.e., complete hardware-software systems which 

users buy, turn on, and immediately begin using to solve their problems), the 

development of which has been hampered by the lack of software standards. 

Image processing is seen by some as being not a market per se, but rather a 

broad and diverse set of applications within existing markets (Schwarz 1990). 

Others who may speak of an actual “market” for image processing 

nevertheless also see it as being broad, diverse, and shallow, with many 

potential customers needing only one or two processing systems to use as tools 

to get their job done. It is not economical for software developers to attempt to 

address the needs of such a market without the “enabling technology” 

provided by a good set of software standards. 

It is traditional for software development to lag hardware development 

in all areas of computerized data processing, and the lag has been noted for 

some time in the field of image processing (Frei, 1985). This lag is, to some 

degree, natural and expected; software developers want to be confident that 

there will be significant demand (in the form of an installed base of users of 



www.manaraa.com

the target hardware platform) for their product before committing resources 

to the product’s development. And in any case, a working prototype of the 

target hardware must be available for any appreciable software development 

to take place. However, the software lag, when large compared with the rate of 

progress in hardware capability, can retard the growth of computer markets. 

By the time software products that fully exploit the capabilities of a given 

generation of hardware are on the market, the next generation of hardware is 

out, and the prospective buyer of a system must choose between a hardware 

platform that is already becoming obsolete but for which there is useful 

software available, and a state-of-the-art hardware platform which will 

probably not have useful software available until it, too, is becoming obsolete. 

Under these circumstances, many potential buyers may simply decide not to 

buy anything. Some industry observers believe that the image processing 

software development lag is steadily getting worse (Mazor 1990), and that this 

is keeping customers away. Software standards are an important way of 

dealing with the negative effects of the software development lag. By hiding 

the hardware-specific details from the software developer, these standards 

make it possible for the developer to write software that runs on multiple 

hardware platforms and/or more than one generation of a given hardware 

platform, and to do so in less time than would be required without standards. 

The software developer’s costs are greatly reduced and potential earnings 

increased, and thus his/her risk is lowered. 

Serious attempts at developing image processing software standards 

have appeared only since the late 1980’s. One notable early effort is the 

Imaging Kernel System, or IKS, developed at the University of Lowell. IKS was 
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designed as a device-independent application program interface (API) which 

would allow programmers to, without detailed knowledge of the target 

hardware architecture, develop image processing applications programs that 

were portable to any hardware platform supporting the standard and that 

would automatically take full advantage of any special image processing 

capabilities of each hardware platform. Features of IKS included object- 

oriented design, use of virtual devices and virtual device tables for translating 

application requests from the API level down to the appropriate hardware, 

data abstraction of various data items and structures used in image processing, 

and a client-server design model in which client programs (i.e., application 

programs) requested processing services of the IKS server through the API. 

While IKS itself was not adopted as an industry-wide standard, its developers 

went on to sit on the American National Standards Institute (ANSI) committee 

X3H3.8, which, along with the International Standards Organization (ISO) 

committee SC24, began working to develop an ANSI standard image processing 

API known as the Programmer’s Imaging Kernel, or PIK (Pfeiffer 1990). 

Another API, under development at a company called VITec, is known as 

“Programmer’s Image Computing Environment Software (PICES). PICES 

developers also sat on the ANSI committee developing PIK, and as of late 1990 

claimed that the then currently available version of PICES would conform to 

the PIK standard when it is finalized (Pfeiffer 1990). PICES has many features 

in common with IKS, such as memory management, support lor user-defined 

algorithms and data types, and virtual I/O device interfaces; its developers also 

claim that its design will facilitate interoperability with other APIs (e.g., 
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graphics APIs such as PHIGS and GKS), leading to the tightly integrated 

“visualization environment” foreseen by Pfeiffer. 

The formation of the ANSI committee to develop PIK represents 

widespread recognition of the need for an industry standard image processing 

API. The situation with PIK in early 1991 was as follows: Most of the major 

workstation vendors and many of the major vendors of special-purpose image 

processing hardware subsystems are represented on the committee. The stated 

goals of the PIK committee are much the same as those of other, previous 

image processing API developers: software portability and extensibility, 

hardware platform independence, compatibility with other standard APIs, 

window systems, and image file formats, and provision of data management 

utilities. While PIK does not address system performance issues, not excluding 

real-time applications is also a stated goal (Stephenson 1990). PIK contains a 

large and diverse library of image processing algorithms and utilities, which 

reflects the broad, shallow nature of the image processing market and the 

broad-based makeup of the ANSI PIK committee. Most image processing 

applications developers will likely deal with only a small portion of this 

library. The reader is referred to the article by Stephenson (1990) for a 

summary of PIK operators, but is cautioned that the only final word on PIK 

will be the ANSI standard itself. Several issues are yet to be resolved with PIK, 

and others will attend the finalized version. There is not yet agreement on the 

implementations of all image processing algorithms in the standard’s library. 

The internal (i.e., machine) representation format of image pixel data types is 

not specified by the standard; neither are storage formats or conventions for 

image data memory management specified. These issues will affect efforts to 



www.manaraa.com

verify a PIK implementation’s conformance to the standard, and, since 

verifiability of a standard is an important requisite for its acceptance, could 

slow its acceptance. Also, PIK does not address performance issues; this 

encourages the migration of the standard to the largest number of 

“price/performance points”, from low-cost personal computers to expensive 

supercomputers. However, coupled with other non-specified system 

characteristics such as memory management conventions, the lack of 

performance specifications could hold pitfalls for applications developers 

(Stephenson 1990). In any case, the PIK standard will more than likely have a 

positive impact on image processing application development, spurring 

growth in the image processing industry as a whole. 

In early 1991, an official ISO project, titled Image Processing and 

Interchange (ISO/IEC Project 1.24.10), was begun to develop an international 

standard integrating an image processing API as well as an image interchange 

facility (Clark 1992). Previous work on PIK is to form the basis for the API, 

which is now called PIKS (for Programmer’s Imaging Kernel System). It is 

intended that the image processing API (i.e., PIKS) and the image interchange 

facility (IIF) will work independently of each other, although there will be an 

interface between the two. To address the problems presented by the broad, 

shallow nature of image processing markets, there will be a number of 

conformance levels for both PIKS and the IIF. Less demanding applications 

will only need to meet lower conformance levels of the standard. The PIKS 

standard is currently planned to specify about 200 image processing operators 

in the following categories: image analysis, classification, color processing, 

detection and registration, edge, line and spot detection, enhancement, 
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filtering, geometric, morphological, point operations, restoration, 

segmentation, shape, unitary transformation, and 3-D specific operators. 

Details about PIKS have not yet been made available to the general public; the 

schedule for the standard places its completion date in early 1994 (Clark, 1992). 

Another standard still under development and receiving much attention 

is the JPEG compression standard (this standard is more a specification of a set 

of algorithms than of a software interface, but is nevertheless important to the 

image processing industry). The acronym JPEG stands for the Joint 

Photographic Experts Group, a collaborative effort between the CCITT 

(International Telegraph and Telephone Consultative Committee), and ISO 

(International Standards Organization). JPEG’s purpose is to develop a robust 

standard for compression of virtually any type of continuous-tone digital 

source image; the draft standard compression method is based on the Discrete 

Cosine Transform, or DCT (Wallace 1991). The JPEG compression standard is 

seen as another extremely important enabling technology for image 

processing applications. Though image capture and display devices suitable 

for a multitude of applications are now quite affordable, many of these 

applications are still not yet viable due the enormous amounts of data required 

to represent digital images and the attendant storage and transmission costs. 

JPEG’s stated goals arc as follows: 1) To achieve state-of-the-art or nearly state- 

of-the-art compression rates for a wide range of image quality ratings, while 

allowing the application or user to set the desired compression/image quality 

tradeoff, 2) to be applicable to virtually all continuous-tone digital source 

images, 3) to have tractable computational complexity, allowing software 

implementation with good performance on general-purpose CPUs as well as 
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low-cost hardware implementations, and 4) to have sequential, progressive, 

lossless, and hierarchical encoding modes of operation (the reader is referred 

to the article by Wallace for details on these modes). It is predicted that if 

JPEG’s goals are substantially met, many image processing applications will 

flourish, widespread exchange of image databases between different 

application areas will take place, and performance-sensitive applications 

inhibited by high storage and transmission costs will be served by high- 

volume, low-cost VLSI implementations. 

2.2.3 Other Contemporary Image Processing Packages 

Many types of image processing software products are currently 

available, and we may only expect more to appear. These products range from 

simple algorithm libraries to complete, end-user application programs, such as 

HAPPI. In this section, we briefly discuss a few image processing software 

packages which are contemporaries of HAPPI. The intent here is to look at a 

sampling of the different types of available products; a comprehensive 

analysis of the image processing software market is beyond the scope of this 

document. 

At one end of the spectrum of image processing products is Paragon 

IL/F, from Paragon Imaging. The IL/F product is simply a FORTRAN 

subroutine library of image processing algorithms. The IL/F library is large 

and robust, with functions ranging from simple image data management 

utilities, arithmetic (add, subtract, multiply, divide) operations on images, and 

statistical analyses of images, to more advanced image restoration algorithms 
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such as Wiener filtering. Use of Paragon IL/F requires programming; IL/F is 

not meant as an application. The IL/F user is responsible for specifying the 

desired behavior of his/her image processing application, and for 

implementing it through the subroutine library. This product is somewhat 

primitive, as it only offers algorithms for processing functionality; it does not 

provide user-interface building tools. The choice of FORTRAN for the library 

is a handicap for development of applications with graphical user interfaces 

(GUIs); most modern GUIs are written in a more powerful language, such as C, 

and difficulties would likely be encountered in interfacing a GUI with this 

particular processing software. 

A much more sophisticated application development software product, 

also from Paragon, is known as Visualization Workbench. This product not 

only provides an extensive algorithm library like that found in IL/F, but in 

addition has facilities for creating combinations of graphical and command 

line-based user interfaces. Most importantly, the application programmer can 

develop an application without writing actual source code; Visualization 

Workbench provides a “visual programming” feature, wherein the 

application developer creates a prototype by manipulating graphical icons on 

the computer display. Visualization Workbench is designed to run on the host 

processor of a workstation-class computer, and thus does not support any 

special-purpose accelerator boards. However, its algorithm library is claimed 

to support the PIK draft standard, which means that it should automatically 

take advantage of any PIK-compliant accelerators once the standard is 

finalized and such products begin to appear. 
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Another application development environment with slightly different 

features is Environment36, from Gems of Cambridge. Unlike Visualization 

Workbench, Environment36 supports an optional hardware accelerator card, 

also manufactured by Gems. Environment36 consists of this hardware 

accelerator and an application development software package called 

Gemsoft36. Gemsoft36 contains both an algorithm library (which appears to 

be less robust than Paragon’s) and programmer’s toolkit for building a 

graphical user interface. In this respect, prototyping with Gemsoft36 is most 

certainly easier than with Paragon IL/F, though not likely to be as effortless 

as with Visualization Workbench. Like Visualization Workbench, Gemsoft36 

runs on a workstation-class host computer. 

Representative of personal computer-based image processing is Image- 

Pro from Media Cybernetics. Originally available only for PCs, this end-user 

application package has also been implemented on workstation-class 

computers. As all but the most rudimentary point transformations are often 

unwieldy to perform on a PC’s host processor, a number of image processing 

accelerator boards are available for PCs; Image-Pro supports several of these 

boards. Many relatively primitive image analysis functions are available in 

Image-Pro (e.g., histograms); the few processing functions are also fairly 

elementary, consisting mostly of convolution-based and lookup table (LUT) 

transformations. A separate Image-Pro module which performs Fourier 

frequency-domain processing can be purchased, but, in this author’s opinion, 

the base package is of such limited use that it would greatly benefit from 

having the Fourier module integrated into it. The consensus of Image-Pro 

users, including both those quoted in trade journals and users at Iowa State’s 
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Center for NDE, is that while it may be useful as an exploratory tool for 

newcomers to image processing, Image-Pro’s utility is severely limited for 

more experienced practitioners with more demanding applications (Mazor 

1990). 

Several image processing packages have been developed at U.S. 

universities and research laboratories; many have been placed in the public 

domain and are thus available free of charge. One such package is called View, 

and is co-funded by the Lawrence Livermore National Laboratory, the 

Strategic Defense Initiative Organization, and the Rome Air Development 

Center. View is written to run on workstation-class computers with a window- 

based user interface. Unlike the Paragon and Gems products, View is an end- 

user application. The extent and diversity of its image processing capability is 

much greater than that of Image-Pro, but somewhat less than that of the 

Paragon products. Distinguishing features of View are that it supports three- 

dimensional data set processing and visualization, has a basic image simulation 

capability, and includes some traditional filters not found in other packages 

(e.g., Bessel and Butterworth filters). View is maintained as an ongoing 

project by the Lawrence Livermore National Laboratory. 

The Scan IV system from DuPont, mentioned earlier in the chapter, 

represents the other end of the spectrum from simple algorithm libraries. It 

consists of special-purpose hardware plus end-user application software 

written specifically for that hardware; it is truly a bundled, turnkey system 

for NDE radiography. Its distinguishing features are its very high-resolution 

scanner, large image storage capacity, and film hardcopy capability. 

Literature for the product indicates that the system’s software is not as state- 
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of-the-art as its hardware, and that because of the relatively low volume of 

sales, custom software work is often done for individual customers. However, 

the product literature also indicates that more specific applications software 

(e.g., image processing for weld flaw classification) is planned. 

As may be seen from the above examples, many types of image 

processing software, ranging from toolkits to hardware-specific application 

programs are available to meet different needs. This is a reflection of the 

nature of the image processing market. It is hoped that the above discussion 

has given the reader a feel for this market that will provide some perspective 

for assessing HAPPI. In the next section, we discuss the design objectives, 

program features, and the top-level structure and functionality of HAPPI. 

2.3 HAPPI Design Objectives and Program Features 

HAPPI’s design objectives were based on perceived user needs gathered 

through interaction with the industrial sponsors of the Center for NDE at ISU. 

These sponsors indicated that they would like to have an integrated hardware- 

software system capable of both capturing and processing digital images of 

radiographs, with a large repertoire of image processing algorithms accessed 

through a friendly, intuitive graphical user interface. The most likely user of 

the system was to be a radiographic technician responsible for inspecting 

parts; other possible users included NDE engineers responsible for developing 

inspection methods for new products. Also, HAPPI was intended to be a 

prototype for a commercial package to be developed by an industrial partner 
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of the Center for Advanced Technology Development. The design objectives of 

HAPPI as enumerated at the beginning of the project are listed below: 

1) To provide an easy-to-use interface between the NDE radiographer 

and image processing software particularly useful for NDE. 

2) To allow the user to produce useful results (i.e., detected flaws) 

without requiring him/her to embark on a long, detailed study of image 

processing theory. 

3) To provide the user with a wide range of utilities such as image file 

format conversions, audit trails of image processing steps, and macro building 

(where a "macro" in this sense is a specific series of image processing steps 

performed in sequence on an image or set of images). 

4) To provide an interface for users who wish to add their own 

processing algorithms to the package. 

5) To make the software as device-independent as possible. 

6) To make modification and enhancement of the package by 

programmers other than the original authors straightforward. 

HAPPI features a graphical user interface based on the X Window 

network-based graphical window system developed at MIT. The user interface 

consists of a graphical hierarchical menu structure through which all 

program functions are accessed using the mouse. A “Main Menu” window and 

an “Information” window are displayed at all times while HAPPI is running. 

Other types of windows appear only when the functions they serve are 

activated by the user through the Main Menu window. These other windows 
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include submenus activated by making a main menu selection, a “Value” 

window through which the user enters parameters for processing routines, an 

“Acknowledge” window in which the user is advised of unusual or dangerous 

situations (e.g., the user attempting to delete a newly created image which has 

not yet been saved to disk), image windows in which images are displayed, a 

system window which gives the user access to an operating system shell, and 

graphics windows in which image histograms and one-dimensional image 

slice data are displayed. HAPPI’s main menu selections arc: “Image 

Processing”, which contains all of HAPPI’s image processing functions; 

“Acquisition”, which contains image acquisition functions; “Images”, which 

contains functions for loading and saving images from and to disk storage; 

“Macros”, which contains macro processing functions (to be explained below); 

“Special Functions”, which contains functions to access operating system 

services, including an operating system shell; “Buffer”, which displays a list 

of all images currently in memory and their display status (i.e., displayed vs. 

hidden); and “Quit”, which exits the user from the program. For further 

details on HAPPI’s menu hierarchy, the reader is referred to the HAPPI 

documentation listed in the bibliography. 

An important feature of HAPPI is its built-in macro language. This 

feature allows the execution of package functions normally accessed through 

the menu structure to be performed with no user interaction between the 

beginning and end of the sequence of macro instructions. The macro 

language contains all common features found in other high-level languages, 

such as variable declarations, conditional and looping constructs, and user- 

defined subroutines. 
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It was assumed that the targeted user of HAPPI (i.e., the NDE 

radiographer) is not an experienced programmer, and also that he/she is not 

familiar with image processing theory or techniques. Default input 

parameters for each processing routine are provided to enable a new user to 

get a feel for the results produced by a particular algorithm without being 

concerned with how the results were obtained. Also, when a user alters the 

default input parameters, the values used are preserved and become the new 

default parameters for remainder of the processing session. It was also 

assumed that the user may need to do both routine inspection of parts from a 

production line as well as occasional inspection of a part in the prototype 

stage. The menu-based interface thus accommodates interactive processing 

for exploratory prototype inspection while the macro language facilitates 

batch processing of multiple production line radiographs once a processing 

scheme has been optimized for a particular part. 

To make HAPPI as portable as possible, it was necessary to adhere to all 

existing software standards. However, at the time of HAPPI’s design, the image 

processing APIs discussed in the previous section were cither not widely 

adopted or not complete. In essence, there were no image processing software 

standards upon which HAPPI could be built; each hardware vendor had a 

unique, nonstandard interface. Consequently, it was not possible for HAPPI to 

make use of any high-performance computer architectures for image 

processing while remaining highly portable. It was thus decided that HAPPI 

would be implemented on a graphics workstation-class computer typical of 

those used for a wide range of engineering tasks. The operating system of 
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choice for these computers is UNIX*, and the graphics standard used on these 

machines is X Windows (or simply “X”)- The most widely used and documented 

programmer’s interface to X is through the C programming language. At the 

beginning of the project which produced HAPPI, X was the de facto industry 

standard; X has since gained universal acceptance. The C programming 

language is a natural choice for applications running under UNIX, as the UNIX 

operating system itself is written in C. The language is relatively small, which 

allows the programmer to regularly use most of its features and makes 

applications extremely portable; C also gives the programmer access to 

powerful low-level hardware functions. 

The X Window system was developed at MIT in cooperation with a 

consortium of corporate sponsors. It provides high-performance, device¬ 

independent, network transparent graphics, and features a client-server 

programming model. In this model, application programs act as “clients” 

which request the network services of an X server. The X server is a program 

running on a user’s display which controls that display’s hardware and 

provides I/O services to applications, and which maintains its own local data 

structures to minimize network traffic between it and its clients. The fact that 

clients may request X services across a network means that compute-intensive 

applications may run on a powerful central host computer while displaying 

sophisticated graphical output on one or several low-cost X display stations. On 

invocation, X applications must request and make a connection with an X 

server and initialize any data structures to be maintained by the server. The 

foundation layer of X is the X network protocol; this is the mechanism by 

*UNIX is a trademark of AT&T. 
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which servers and clients communicate. The application programmer’s lowest 

level interface to X is a set of C language function calls, built on top of the 

protocol, and referred to as Xlib. The authors of X intended that most 

applications be written using a higher-level programming interface, called a 

toolkit, than Xlib. However, at the time the HAPPI project began, no standard 

toolkit had emerged (O’Reilly 1989 and Nye 1990, p.10), and so application 

programmers could not be certain of writing extremely portable code using 

any of the toolkits available at that time. For this reason, a sort of “custom 

toolkit” was written for HAPPI using Xlib; this set of routines was used 

extensively throughout HAPPI to create and destroy windows and exchange 

information between the program and the user. Several of the routines are 

discussed in Chapter 4 on extending HAPPI; additional information is available 

from the HAPPI documentation in the bibliography. The reader is referred to, 

as an example, the text by Scheifler et al. (1988) for further information on X. 
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CHAPTER 3: EVALUATION OF HAPPI 

3.1 Introduction 

As with most projects with a finite time budget, HAPPI is not everything 

that it could be. The program was written not by experienced software 

designers but by students, and of necessity, much on-the-job learning took 

place during the course of the project. In this chapter, we evaluate HAPPI's 

strengths and weaknesses, with the hope that the experience gained will 

influence both the maintenance and extension of the X-ray Image Processing 

Group's local version of HAPPI and the future design of other image 

processing software by the group. 

3.2 Strengths of HAPPI 

HAPPI's strengths arc the robustness of its library of processing 

routines, the ease of use of its user interface, and its portability, extensibility, 

and programmability. This is not to say that HAPPI is perfect in all of these 

areas, but rather that it addresses them well. We will see in the next section 

where HAPPI could be improved in these and other areas. 

HAPPI's repertoire of image processing routines consists both of 

common, well-known techniques, as well as more specialized techniques 

which have been developed over the past few years in the X-ray Image 

Processing Group. The more common techniques are found in many 

commercial image processing software packages, and thus constitute a 
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minimum amount of functionality that HAPPI needs in order be competitive 

with such software packages. Most of these common techniques have been 

implemented in HAPPI. (The gaps in HAPPI's repertoire of basic processing 

routines are discussed in the next section.) The more specialized techniques 

developed by the X-ray Image Processing Group, such as the routines found 

under the "Flaw Detection" menu, round out HAPPI's processing capability and 

distinguish it from other, more generic image processing packages. These 

routines were developed using NDE images as test data, and are, to varying 

extents, better "tuned" to certain NDE applications than the more common 

routines. On occasions when HAPPI has been presented to the industrial 

sponsors of the Center for NDE at 1SU, NDE practitioners have indicated that 

HAPPI's library of processing routines is quite robust compared with that of 

other commercially available software. One consequence of this is that HAPPI 

may often provide many more processing functions than are needed for a 

particular NDE application. 

HAPPI's menu-driven, graphical user interface has proven to be easy 

for first-time users to experiment with. During the last phase of the project, a 

complete demonstration system, including a workstation, frame grabber, light 

box, and camera, was taken to the NDE lab of one of the Center for NDE's 

industrial sponsors. Personnel at the sponsor's site were able to load, process, 

and store images with minimal help from the developers of HAPPI and without 

reading a manual. The routines which fetch user input for HAPPI's 

processing routines guide the user’s choice of input parameters, indicating 

and enforcing any parameter constraints, and proposing default values that 

meet these constraints. Default parameter values for processing routines with 
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similar input parameters are shared between such processing routines. Also, 

the last value entered by the user for any given parameter is preserved and 

used as the default parameter value at the next invocation of any function 

which uses that parameter. These features help the user to easily experiment 

with the effects of each processing routine on images without burdening 

him/her with the responsibility of remembering parameter constraints and 

previously used parameter values. 

HAPPI's portability has been demonstrated by successful ports (with 

minor modifications) to computers other than the Stellar GS1025 on which it 

was developed. The program is based on standards that were stable at the time 

it was written: C, UNIX, and the Xlib interface to X Windows. HAPPI is thus, in 

theory, portable to any system that adheres to these standards. The C language 

is itself inherently portable by virtue of the "smallness" of the language; it is 

relatively easy to write portable programs in C by following a few simple 

conventions (Kelley and Pohl, 1984, p.2). UNIX is the operating system of 

choice on the workstation-class computers for which HAPPI was designed. As 

HAPPI’s graphics routines were written using the Xlib low-level interface to X 

Windows, HAPPI does not require the support of any particular X toolkit to port 

to a particular workstation. 

The code structure underlying HAPPI's image processing functionality 

is fairly regular and repetitive. This makes HAPPI readily extensible by C 

programmers. In Chapter 4, we give a procedure for adding new image 

processing routines to HAPPI, discussing in detail the code structure and tools 

available to the programmer modifying HAPPI. A central piece of code 

examined in Chapter 4 is the Image Processing Manager. The Image 
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Processing Manager enhances HAPPI's extensibility and maintainability by 

providing a versatile interface to HAPPI’s image processing routines that 

accommodates both menu-driven and macro-driven access to the processing 

routines. 

HAPPI's built-in macro language provides programmability to the 

HAPPI user. The macro language can execute most of HAPPI's image 

processing and image I/O functions, and also implements many features 

common to general-purpose computer programming languages, such as 

variable declarations, looping and decision constructs, and procedure 

definitions. HAPPI's "convert history to macro" feature allows the user to 

create a macro from the processing history of an image without typing a 

single line of macro language code. The macro language is useful for doing 

repetitive processing of many similar images. It may also be used in an 

exploratory processing situation to determine the most useful processing 

routines and input parameters to use on a particular image or class of images. 

3.3 Areas for Further Improvement to HAPPI 

There are many ways in which HAPPI could be improved. Some of the 

possible improvements involve adding desirable features that were identified 

later in the project but were not implemented for lack of time. Others involve 

more extensive changes to the underlying structure of the program. For 

purposes of discussion, the proposed improvements to HAPPI in this section 

are grouped into user interface enhancements, overall program behavior 
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enhancements, additional functionality, and enhancements to performance 

and code maintainability. 

3.3.1 User Interface Enhancements 

Perhaps the most useful improvement to HAPPI's user interface would 

be the addition of a command-line interface concurrent with the existing 

menu-based graphical user interface. With such an interface, the user would 

be able to access any of HAPPI's functions by typing alphanumeric text in a 

command entry window and possibly by using programmable function keys. 

Experience has shown that software users tend to favor mousc-and-menu- 

based interfaces when first learning how to use a new program, as the menus 

guide their choice of input. However, as a user becomes more experienced 

with a program, and begins to memorize the various commands and command 

parameters and options, a command-line interface becomes more desirable, as 

it generally facilitates faster user interaction and results in less screen clutter 

than a mouse-and-menu-based interface; this is especially evident when there 

are many nesting levels in the menu hierarchy. HAPPI's built-in macro 

language is the most logical starting point for implementing a command-line 

interface; the language already provides access to HAPPI's most-used and most 

important functions. The degree of difficulty of adapting the macro language 

to a command-line interface would depend on how much of the macro 

language is implemented in the command language. Making the macro 

language's programming constructs available from the command window 

would require more effort than simply making the image I/O and processing 
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calls available. It should be noted that a large part of the task of implementing 

a command-line interface for HAPPI lies in parsing, analyzing, and 

interpreting the command line; much of this has been taken care of in 

implementing the macro language. 

A possible extension to a command-line interface to HAPPI would be the 

execution of HAPPI commands and/or macros directly from the operating 

system prompt. This would involve invoking HAPPI without creating or 

displaying any windows, loading the remainder of HAPPI's (non-windowing) 

code and executing the command and/or macro, then returning to the 

operating system. Such an extension to HAPPI's interface would be useful for 

users who, after experimenting with different processing techniques, have 

identified and standardized particular methods that they use frequently. These 

users may wish to implement their standard processing methods on a large 

number of images without being obliged to clutter their computer screens 

with HAPPI's graphical interface at a time when they are not using that 

interface. Such an extension to HAPPI would also provide processing 

capability to users who do not have X Windows display capability at their 

particular terminals. 

When a processing routine is executed in the present version of HAPPI, 

the user must always first select the processing routine to be executed, and 

then select the input image(s) for the routine. An alternative mode of 

operation would be to allow the user to designate an image as the "currently 

selected image", and have all processing routines selected by the user 

automatically operate on the currently selected image. This mode of operation 

would save the user unnecessary mouse motion and button clicks when he/she 
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is experimenting with the effects of different processing routines on the same 

image. Providing this alternative mode of operation would not be difficult 

given the present state of HAPPI's structure. There would, however, need to be 

a method of indicating graphically which image on the screen is the 

"currently selected image". A further step would be a "multiple image select" 

mode, wherein several images could be selected and a common processing 

routine automatically applied to all of them, using the same processing 

parameters for each of them. 

Another enhancement to HAPPI's user interface which would help 

reduce unnecessary mouse motion and button clicks involves placing "active" 

or "smart" borders around HAPPI's image and graphics windows. In the 

present version of HAPPI, the user must select a menu item to delete or hide an 

image or graphics window, and must re-select the same menu item for every 

window on which he/she wishes to perform the action. After selecting the 

menu item, the user must then select the window on which to perform the 

action, resulting in two clicks per window per operation. A more efficient way 

to remove or hide image and graphics windows would be to place graphical 

borders around these windows, with graphical "buttons" for deleting and 

hiding the window. The user could then delete an image from the screen and 

the computer's memory with a single mouse button click on the appropriate 

spot on the image window border. 

Finally, the method of entering mask values for large user-defined 

convolution masks needs to be streamlined. The current version of HAPPI 

requires the user to manipulate a graphical "value window" to enter every 

single mask value. This can be very slow and time-consuming for large masks. 
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A better method would be to allow the user to type in all mask values directly 

from the keyboard. 

3.3.2 Program Behavior Enhancements 

A very significant enhancement to HAPPI’s overall behavior would be 

the addition of some sort of multitasking capability. In the present version of 

HAPPI, the user may not access any of the program's functions while an image 

processing routine is running. Depending on the speed of the host computer 

system on which HAPPI is running, the size of the image being processed, the 

parameters passed to a processing routine, and other factors, the execution 

time of a processing routine can be anywhere from a few seconds to several 

minutes or tens of minutes. The longer processing times can detract from the 

advantages the user gains from the interactive processing environment 

provided by HAPPI. A multitasking version of HAPPI would allow the user to 

execute more than one of HAPPI's functions at once, allowing the user to be, 

on the average, more productive. The allowed number of concurrently 

running tasks in a multitasking version of HAPPI is a design parameter that 

would need to be studied. With each additional concurrent task, some 

computational overhead is incurred, and at some point the overhead would 

begin to offset the benefits of multitasking. 

One way of implementing a multitasking version of HAPPI is to create a 

separate UNIX process for every HAPPI function whenever that function is 

invoked and perform interprocess communication between the function and 

the main program via pipes. Pipes are first-in-first-out (FIFO) data structures 
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which serve as I/O channels for interprocess communication. Such an 

architectural modification to HAPPI would be a significant undertaking. Other 

methods of interprocess communication that could be considered in building a 

multitasking version of HAPPI include messages, semaphores, shared memory, 

and remote procedure calls (RPC's) (Stellar Computer Inc., 1988b, p.15-1). 

These are all implemented through UNIX system calls; the C language itself has 

no multiprogramming features (Kernighan and Ritchie, 1986, p.2). 

Another possible enhancement to H APPI's overall behavior is the 

ability to read "startup files", which would allow individual users to customize 

the program's behavior to their preferences. In the present version of HAPPI, 

this is not an important issue, as the number of items which could be 

customized is small. Future versions of HAPPI with more overall system 

behavior options would benefit more from such an enhancement. 

3.3.3 Additional Functionality 

A number of functions could be added to HAPPI which would increase its 

utility. Some of these arc commonly found in commercial software; other less 

common functions were inspired by experience with HAPPI itself. We discuss 

here several of these functions, while recognizing that the list is not 

exhaustive; most people who use any particular piece of software for a long 

time can think of endless enhancements they would like to see. 

HAPPI could benefit from the addition of more data visualization tools. 

Many scientific software packages provide extensive plotting and graphing 

capabilities, such as contour plots, 3-d hidden line plots, and others. Addition 
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of these capabilities to HAPPI would enhance its image analysis power, since 

the "best" data display method depends both on the specific application and on 

the tastes of the user. 

HAPPI lacks, and should have, full support for real and complex-valued 

images. HAPPI can currently represent such images internally, but does not 

allow the user to manipulate them. As a consequence, the inverse Fast Fourier 

Transform (FFT) is not accessible to the user. (The forward transform is 

accessible, but currently only provides the magnitude of the complex-valued 

frequency-domain image, and scales the floating-point magnitude values to 

the 0-255 grey scale range.) This is an oversight, as the inverse FFT is an 

essential function, and full support for operations on real and complex-valued 

images should have been planned for earlier in the project. A large group of 

image data manipulation routines embedded in HAPPI's source code, known as 

the "image operation routines”, or "iops", supports user functions which 

manipulate grey scale and binary images. Writing a corresponding set of 

support routines for real and complex-valued images would facilitate the 

addition of user functions to manipulate these images as well. No changes to 

HAPPI's overall architecture would be needed; the new support routines would 

simply be grouped with, and accessed in the same way as, the existing ones. 

Methods and policies for displaying the inherently 4-dimcnsional data of a 

complex-valued image on a 2-dimensional, 8-bit computer display would need 

to be developed, and would have to address both the higher dimensionality and 

the large dynamic range (compared with grey scale images) of complex¬ 

valued images. Another, related capability commonly found in commercial 

image processing software that is missing from HAPPI is user-definable 
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frequency-domain filtering. Full support for complex-valued images and the 

inverse FFT would set the stage for implementing such a frequency-domain 

filtering capability as well. 

Support for additional image data structures may be advantageous for 

future versions of HAPPI. The program was originally intended for use on X- 

ray NDE images. Future versions may include features for processing images 

formed with other NDE inspection techniques, including thermographic, 

electromagnetic, and ultrasonic methods. One can envision combining these 

images into a composite image that could yield much more information about a 

part under test than could any of the images formed with the individual 

inspection techniques. Routines for manipulating such a composite image 

data structure, similar to those which handle binary and grey scale images, 

would need to be written to support processing of the composite images. 

Another variation on this idea is to provide support for processing and 

manipulation of 1-d arrays as data objects similar to images. Many of HAPPI's 

image processing routines could be used to advantage on 1-d data sets from, 

say, ultrasonic scans. Each of these routines would need to be examined and 

modified if necessary to adapt to 1-d inputs. New display routines would need 

to be written to display 1-d arrays as graphs rather than as light intensities. 

HAPPI would benefit from having its own hardcopy capability. Images 

created in HAPPI can be printed by first saving them to disk in PostScript 

format and printing them from the UNIX operating system using a PostScript 

printer. (PostScript is a page description language, or PDL, and is a device¬ 

independent standard supported on a large number of laser printers. PDL's 

such as PostScript can be used to produce very high-quality hardcopy.) 
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However, this obviously requires more steps than would be needed if the 

system calls necessary to print directly from HAPPI were built in to the 

program. Also, images and macro files are the only data objects created by 

HAPPI that can currently be saved to disk and printed from the operating 

system. It would be more desirable to allow the user to print any of HAPPI's 

data objects, including images, image history data, image statistics data, image 

display lookup tables, graphs, and even the entire screen, directly from 

HAPPI. 

Other I/O functions that would benefit HAPPI include the ability to read 

and write any of HAPPI's above-mentioned data objects to and from disk, and 

the ability to do so in different file formats (e.g., native HAPPI formats, 

PostScript format, and other image formats from various hardware and 

software vendors). These capabilities would allow printing of saved HAPPI 

data objects from outside the program when only a printout is needed, and 

would allow HAPPI data objects to be read into other application software, such 

as desktop publishing packages, for purposes of report generation. 

Once the user of HAPPI has identified a flaw or suspected flaw in an 

image, he/she may wish to annotate the image with a graphical indicator of 

the flaw's location and perhaps with explanatory text. HAPPI currently lacks, 

and would benefit from having, this capability. One issue to be addressed in 

implementing graphical and textual annotation is how to keep the annotation 

information with the image data without overwriting any image data. If the 

annotation information is stored in a separate file from the image, it is 

possible for either the image or the annotation file to become "orphaned" if 

the other file is deleted, moved, or renamed. On the other hand, the annotation 
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data should not be simply written over pixel intensity data in the image file, as 

the overwritten data may be needed later. One possible solution is to make the 

annotation information part of the image data structure, keeping it separate 

from the pixel data but saving it in the same file as the image. This solution 

would involve revising HAPPI's image load and save routines and any image 

file format conversion routines to handle the revised image file format. 

Some of HAPPI's routines, such as the white noise generator currently 

found under the "Noise Filters" menu, are meant for experimentation by the 

user and not for filtering the user's image data to make it somehow more 

desirable. These routines allow the user to add known degradations to images, 

and experiment with the effects of these degradations on subsequent 

processing steps. A useful extension to this capability would be the addition of 

a more comprehensive set of flaw simulation functions. This set could include 

routines for generating images of voids and cracks, adding noise with user- 

specified probability distributions, convolving simulated images with transfer 

functions characteristic of various imaging systems, adding a slowly varying 

intensity "trend" to simulated images, and composing a test image from 

extracted portions of other images (real or simulated). 

A new trend in user interfaces for signal processing, VLSI design, 

Computer Aided Software Engineering (CASE), and many other types of 

engineering software is the ability to do "visual programming." With these 

software packages, the user programs a complicated process by 

interconnecting graphical objects representing the various operations that 

make up the process. Each object may have several inputs and outputs, as well 

as feedback, depending on the application. Examples of software with such 
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capabilities are the Visualization Workbench product from Paragon Imaging 

(Paragon Imaging, Inc.)* and the development system software for a video 

signal processor marketed by Silicon & Software Systems (Blagden and 

Scanlan, 1990). HAPPI's macro language could gain a new level of user 

friendliness if it were implemented with a visual programming interface. 

Adding this capability would be a significant undertaking; while major 

architectural modifications to HAPPI would probably not be necessary, the 

additional functions needed to draw the graphical symbols and translate 

graphical information to actual sequences of macro instructions would 

require careful design and many lines of code. 

While HAPPI makes a large number of functions available to the user, it 

seems that there are always more that would be nice to have. A number of 

miscellaneous tools and functions proposed for addition to HAPPI near or since 

the end of the project's funding are briefly discussed in the following 

paragraphs. 

A useful function that could be readily implemented in HAPPI is the "in- 

place" processing of a rcgion-of-intcrcst (ROD in an image, with the output 

data being overlaid at its original location within the image from which it was 

extracted. This would allow the user to reduce processing time by processing a 

smaller data set while retaining the visual context of the processed data for 

image interpretation. 

HAPPI presently is capable of generating colormaps, or image display 

look-up tables (mappings of an image's numerical pixel values to light 

intensities on the computer display) which have a single linear segment. This 
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capability could be extended to allow piecewise linear colormaps with multiple 

linear segments. 

One of HAPPI's particularly useful analysis tools is the "Pixel Analyzer", 

which, as the user moves the mouse cursor within an image, dynamically 

displays a magnified region of the image and the coordinates and numerical 

value of the pixel to which the mouse cursor points. This tool could be 

enhanced by calibrating its readout in terms of engineering units, such as 

centimeters in place of pixel coordinates, and optical density in place of 

numerical pixel value. 

Another of HAPPI's analysis tools is the "real-time slice.” To use this 

tool, the user drags a "slice cursor" (a vertical or horizontal line) across an 

image with the mouse, and the row or column of the image currently under 

the slice cursor is dynamically displayed in a separate "slice window" as a 

graph of grey level vs. position along the row or column. As the user moves 

the slice cursor across an image, the row or column of the image graphed in 

the slice window is continuously updated. The real-time slice capability could 

be further enhanced by allowing the user to take a real-time "slice" of the 

image at any arbitrary angle. This would help the user in analyzing long 

crack-like image features oriented at any angle. 

3.3.4 Performance and Code Maintainability Enhancements 

As mentioned in Subsection 3.3.2, some of HAPPI's image processing 

routines can take tens of minutes to complete, and given HAPPI's current 

inability to do multitasking, the user cannot do any useful work with HAPPI 
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while a processing routine is executing. Thus, a user who often needs to 

perform the more time-consuming processing tasks will find processing with 

HAPPI to be an inefficient use of his/her time. Part of the solution to this 

problem is, as previously discussed, to provide a multitasking capability within 

HAPPI. The other part of the solution is to make HAPPI run as fast as possible. 

In this section, we discuss issues related to increasing HAPPI's processing 

speed. 

The Stellar GS1025 graphics supercomputer on which HAPPI was 

developed contains a multistream processor with a synchronous pipeline 

multi-processor architecture, which can concurrently execute up to four 

instruction "streams", and also contains four identical vector/floating-point 

processor units which can work independently or in tandem (Stellar Computer 

Inc. 1987, p. 7, 15). Depending on how a program is compiled (i.e., what 

compiler options are specified), and on how busy the computer system is with 

other tasks, a program may run in a parallel and vectorized fashion, using 

from one to four of the available instruction streams and from one to four of 

the vector/floating-point processors. At the time that HAPPI was written, the 

C compiler provided with the GS1025 system did not have full support for all 

optimization options, and so the present version of program has not been 

compiled with these options. Thus, HAPPI does not take advantage of much of 

the computing power available on this system. In one test of HAPPI's 

processing speed on the Stellar GS1025, the Abingdon Cross image processing 

benchmark (Preston, 1990) was performed, with quite unimpressive results 

(Doering, 1990). At this writing, the latest operating system release for this 

machine, with full support for the C compiler's optimization options, is soon to 
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be installed, making compilation of a vectorized and parallelized version of 

HAPPI possible on the GS1025. A fully optimized version of HAPPI will be 

considerably more useful for the X-ray Image Processing Group than the 

present version. (Note, however, that the speedup from optimization discussed 

here only applies to the Stellar machine.) 

Although the optimizing compiler on a multiprocessing vector machine 

such as the Stellar does most of its work of vectorizing and parallelizing code 

automatically, the programmer must sometimes intervene and provide explicit 

instructions to the compiler to get the most performance out of a program. 

Certain code constructions inherently cannot be optimized. For example, loop 

vectorization is inhibited whenever the compiler detects a real or apparent 

recurrence in a loop. A recurrence, in the sense used here, is "an assignment 

to a variable in one loop iteration, followed by a use of that variable in a 

subsequent iteration" (Stellar Computer Inc., 1988a, p. 2-15). An 

autoregressive calculation is an example of a recurrence in this sense of the 

word, and as it is an inherently serial calculation, it cannot be vectorized. 

Since the compiler can not know everything about a program's execution in 

advance, it is sometimes unclear whether a certain piece of code can be safely 

optimized, and the compiler will refrain from optimizing some optimizable 

sections of code out of caution. The programmer may insert special 

instructions to the compiler, or compiler directives, in his/her code that tell 

the compiler it is "safe" to optimize a section of code. Several directives are 

available to enable the different types of optimizations. Obviously, the 

programmer should use the optimization directives with care; unpredictable 

and elusive errors can arise if the compiler is given license to optimize non- 
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optimizable code. There are also ways in which the programmer can write 

program statements to make the optimizing compiler's task easier. For 

example, one optimization technique known as "tree height reduction" 

attempts to break an expression into as many as possible sub-expressions as 

can be concurrently evaluated. Sometimes a programmer will use 

unnecessary parentheses in writing an expression simply to make the 

intended order of operations in the expression more clear at a casual glance. 

While this practice may result in more readable code, it can also unnecessarily 

constrain the compiler's choices as to the order of operations in an expression, 

thus overriding the more optimal choice the compiler would have made in the 

absence of the unnecessary parentheses (Stellar Computer Inc., 1988a, p. 2-5). 

Other speed enhancements to certain of HAPPI’s routines requiring no 

code modifications are possible through the use of special routine libraries. 

Workstation vendors sometimes provide special optimized versions of standard 

C libraries, such as the math library, which take advantage of any special 

architectural features of their workstations. The Stellar GS1025 has such a 

math library (the "fastmath” library), which features fast-executing 

vectorized implementations of trigonometric, inverse trigonometric, 

logarithmic, exponential, and hyperbolic functions in both single and double 

precision versions. Using the fast math library in place of the regular library 

is as simple as changing one line of text in HAPPI's source code files. (Note: 

The "fastmath" library was not accessible from C in the version of the 

compiler used for the HAPPI project; the new version soon to be installed has 

full support for "fastmath.") 
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The speed enhancements discussed thus far are mostly accomplished by 

tools supplied as part of a workstation's software development environment, 

and require relatively little input from the programmer. However, the 

resulting speedup in program execution will only be as good as the tools 

themselves, and also can only do so much to speed up inefficient code. It is up 

to the programmer to analyze and revise his/her code in ways that the tools 

cannot. A first step in doing this is code profiling. Code profiling is the 

"running of a program in such a way that is can be analyzed to determine 

where it spends most of its time” (Christian, 1988, p. 145). This is usually 

accomplished by compiling a program using a compiler option which inserts 

additional instructions into the program to allow the monitoring of control 

flow. The program is then typically run under control of another, special 

program called a profiler, which reports on what percentage of its total 

execution time the program spends in each routine. The most time-consuming 

sections of code are thus identified, and the programmer can then maximize 

the speedup in execution time gained per unit time spent rewriting inefficient 

code. One particular routine in the current version of HAPP1 that is known to 

need rewriting for speed (though its unusual slowness was not identified with 

code profiling in this particular case) is the "Row/Col Fit" routine under the 

"Trend Removal" menu. This routine runs at least an order of magnitude 

slower in HAPPI than its original stand-alone version, for reasons unknown at 

this writing. To date, HAPPI has not been profiled to identify problem code. 

One way in which HAPPI might be sped up after a more detailed analysis 

of its code is through the judicious choice of control parameters to the fast 

version of the memory allocation routine malloc(). The way in which this 
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routine divides up available blocks of memory, and thus the speed at which it 

can satisfy memory allocation requests, is determined by these parameters. 

A possible performance enhancement whose potential benefit has not 

yet been quantified is dynamic memory management, or "garbage collecting". 

HAPPI must ask the operating system to dynamically allocate memory space 

for many of its data structures. The operating system services each request by 

searching a "memory map” for the next available chunk of contiguous 

memory locations of the appropriate size and returning the address of the 

beginning of that chunk to HAPPI. When a function within HAPPI completes, 

the memory allocated for that function is deallocated, or released back to the 

operating system. However, between the time that memory is initially 

allocated for a function and the time it is deallocated, other requests for 

memory may have been made by other functions. Also, each memory 

allocation request asks for a certain size chunk of contiguous memory 

locations, and so pieces of contiguous memory smaller than the requested size 

are skipped over (and thus left unallocated) by the operating system in 

servicing the memory allocation request. These conditions can result in what 

is known as "memory fragmentation." Since contiguous chunks of memory 

are not necessarily deallocated in the exact reverse order that they are 

allocated, there will be "holes" of unallocated memory in the memory map; this 

may make future memory allocation requests more difficult to satisfy. If the 

memory map becomes extremely fragmented, it may become impossible for the 

operating system to satisfy the next memory allocation request, and, 

depending on how well it was written to handle such a situation, a program 

may crash. A solution to this problem is to periodically move all data in 
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allocated memory to contiguous locations, so that there are no holes in the 

memory map. The extent to which HAPPI’s performance degrades due to 

memory fragmentation has not been analyzed. The fragmentation 

phenomenon is dependent upon such things as which of HAPPI's functions 

the user exercises and in what order they are exercised, and also on the 

amount of memory available on the host computer system. 

A wide spectrum of steps could be taken to enhance the maintainability 

of HAPPI's source code. In Chapter 4, a detailed procedure is given for adding 

image processing routines to the program. As will be seen in that chapter, the 

procedure involves duplication and modification of several code structures, 

resulting in redundant code in places. In particular, the routines which fetch 

user input for the image processing routines are all very similar in structure. 

An alternative to this redundant code is the implementation of a universal 

parameter fetching routine, which would be passed the number, names, and 

data types of the input parameters for each routine along with any constraints 

on their allowed values, and would adapt as necessary to display the 

appropriate input parameter menus for each processing routine. This would 

ease the programmer's task of adding new routines to HAPPI by eliminating 

the tedious and error-prone step of copying and modifying a piece of code, 

thereby allowing him/her to concentrate on the more important task of 

describing the input parameter data requirements correctly. Also, a universal 

parameter fetching routine would slow the rate at which HAPPI's code size 

grows with each new processing routine added. 

The UNIX programming environment provides a set of programs known 

as the Source Code Control System (SCCS). Although HAPPI was not developed 
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using SCCS, future versions of the program (and any other future large 

software projects in the X-ray Image Processing Group, for that matter) would 

be much easier to maintain under the SCCS system, as it automates many 

administrative tasks in software development. For example, SCCS keeps track 

of previous versions of source files in an incremental fashion (only the 

changes between versions are stored, so as to conserve disk space); this feature 

allows the programmer to return to any previous version of a program, and 

also provides an audit trail of changes to source code files. The system also can 

be used to control who may edit which source code files, and to protect against 

two or more programmers simultaneously editing the same file (such a 

situation can result in programmer A losing all his/her changes to the file 

when programmer B saves his/her changes after programmer A's changes 

have been saved). 

In Chapter 2, we briefly discussed the former lack of image processing 

program interface standards and the beginnings of such standards that are 

only now emerging. HAPPI's maintainability and portability will be enhanced 

by supporting such standards in the future. Maintainability is enhanced 

because standards tend to "hide" implementation details from programmers 

who may inherit HAPPI, allowing new tools and functions to be built onto 

HAPPI quickly and with confidence of portability. Standards such as the JPEG 

image compression standard will be implemented in special-purpose hardware 

on future workstations; thus, support of such standards will also have the 

desirable effect of greatly increasing HAPPI's performance. 

HAPPI's user interface was built from the low-level Xlib interface to X 

windows. As mentioned before, this had the desirable effect of making the 
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program independent of any particular X toolkit supplied by a workstation 

vendor. However, one disadvantage of this approach is that the graphics 

routines that were custom written for HAPPI are now deeply embedded in the 

code; calls to these routines are used in every function that requires 

interaction with the user. This could make it quite difficult to change the 

"look and feel", of HAPPI's user interface were it decided such a change is 

needed. A way around the problem is to replace all of HAPPI's custom-written 

graphics routines with translation routines that would interface to a different 

graphics routine library such as one of the many X toolkits now available. The 

numerous calls the to present graphics routines could then be left in the code. 

It should be noted, however, that this would be just a "patch", a temporary and 

inelegant way to change the appearance of HAPPI's interface. 

The maintainability of HAPPI from the user's perspective could bear 

improvement as well. HAPPI's present method of interacting with image 

processing routines written by an end-user is not very sophisticated. The 

user-written program is not really integrated into HAPPI's interface at all. 

Rather, the user must communicate with HAPPI through file I/O, which 

means, quite simply, that he/she must write stand-alone programs that read 

and write images in HAPPI's image file format. It is not a trivial task to write a 

program that can easily integrate the functionality of a user-written program 

into its interface. However, we anticipate that the significant architectural 

modifications (e.g., creation of separate UNIX processes for each function, and 

connection of these via UNIX interprocess communication mechanisms) 

necessary to implement a multi-tasking version of HAPPI will put in place 
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much that is required for smoothly integrating user-written programs into 

HAPPI's interface. 

3.4 HAPPI 2.0 

Since the initial draft of this chapter, a second version of HAPPI has 

been written. This version, known as HAPPI 2.0, runs on a Sun SPARCstation1 

IPC workstation, and is installed at this writing on the SPARCstation host 

picard.ee.iastate.edu in the X-ray Image Processing Group’s laboratory. HAPPI 

2.0 was funded by the Center for Advanced Technology Development (CATD) at 

Iowa State University. At this writing, CATD has exclusive control of the 

source code; the original version of HAPPI is the only one whose source code 

is available for modification by students in the X-ray Image Processing Group. 

In this appendix, we outline the differences between the original HAPPI and 

version 2.0. 

The most significant improvement to HAPPI in version 2.0 is the 

implementation of a multitasking capability. Separate UNIX processes handle 

the menu functions and image processing functions. Version 2.0 still only 

executes one processing routine at a time, but the user is able to use other 

HAPPI functions while an image is being processed, and may cue up several 

processing routines for sequential execution before the currently executing 

routine is completed. 

1 SPARCstation is a trademark of SPARC International, Inc., licensed 
exclusively to Sun Microsystems, Inc. 
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HAPPI 2.0 has a revised image data structure, which now includes 

information on the parent image, and, if applicable, the coordinates within 

the parent image from which an image was extracted. All images are now 

internally represented with floating-point pixel values (using the C float data 

type) for purposes of processing. Support for additional image data types and 

for the inverse FFT, as discussed in Subsection 3.3.3, is implemented in HAPPI 

2.0. Also included is a new menu of image data type conversion routines for 

easy manipulation of the various formats. 

HAPPI 2.0’s user interface was written using the Open Look^ user 

interface. As discussed in Subsection 3.3.4, the calls to the original version of 

HAPPI’s custom-written windows toolkit have been removed in version 2.0, 

and replaced with calls to the Open Look toolkit. This significantly changes 

the look and feel of HAPPI. Other changes to the user interface include a 

reorganization of the menu structure and behavior; function groupings have 

been changed, and pop-up menus are no longer allowed to obscure images. 

Also, the sometimes awkward “value window” discussed in Subsection 3.3.1 has 

been eliminated in favor of a simpler “dialog box” into which the user simply 

types the desired parameters. 

Many desirable to changes to HAPPI identified in Section 3.3, and a few 

existing features of the original version, were not implemented in version 2.0 

because of time constraints. No command-line interface was added. The pixel 

analyzer, histogram, and image slice graphics functions, and the macro 

language of the original version are not present in version 2.0. Also not 

implemented were; execution of HAPPI commands from the operating system 

2 Open Look is a trademark of AT&T 
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shell, entry of user-defined mask values, user-specific startup files, 

frequency-domain filtering, hardcopy direct from the program, additional 

data plot types, graphical/textual image annotation, visual macro 

programming, piecewise linear colormapping, and additional support for 

integrating end-user processing routines. 
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CHAPTER 4: EXTENDING HAPPI 

4.1 Introduction 

To be able to interpret results correctly, the image processing 

researcher developing a new algorithm must be in complete control of the 

algorithm's implementation, and so must write it completely from scratch or 

build it from subroutine libraries whose inputs and outputs are well-defined. 

However, to use the algorithm in a robust way, as a tool in an overall image 

processing scheme, it is useful for the researcher be able to use common 

algorithms (other than the one under development) as pre-, post- or 

intermediate processing steps without having to also write his/her own 

version of these common algorithms. Also, for the researcher to make 

his/her algorithm accessible to colleagues working in related research areas, 

it is helpful to have an easy-to-use interface to the algorithm; such an 

interface may propose default input parameters for the user, guide the user 

in selecting from the proper range of values for input parameters, and check 

the user's choice of input parameter values for correctness. These 

capabilities can be provided by integrating the researcher's algorithm into a 

pre-existing image processing software environment. To integrate his/her 

algorithm into an existing image processing environment and provide a 

robust user interface to the algorithm requires additional programming on 

the part of the researcher above and beyond the minimum requirement of 

writing the algorithm itself. The researcher might ask: How much of this 

programming overhead is justified to reap the benefits? 



www.manaraa.com

Experience with HAPPI has shown that, provided they are written 

using a few simple conventions, new algorithms may be added to HAPPI in 

anywhere from 45 minutes to 4 hours, depending on the complexity required 

of the user interaction with the algorithm and other factors, addressed in 

later sections of this chapter. (Note that this estimate does not include 

compile time; compile time is addressed in Section 4.11, "Putting it All 

Together".) 

There is a continuing effort to develop image processing algorithms 

for NDE applications in the Electrical and Computer Engineering 

Department's X-ray Image Processing group at Iowa State University. Thus, 

this group has a need for an image processing software environment that is 

extensible and that provides the programmer with software tools for building 

a friendly user interface onto newly added algorithms. Extensibility was one 

of the primary design objectives of HAPPI, and as such, HAPPI addresses these 

needs for the X-ray Image Processing Group. 

This chapter gives a procedure for integrating image processing 

routines into HAPPI. As HAPPI is a large program, the procedure given 

cannot anticipate all possibilities, and in practice will need to be 

supplemented by referring to the HAPPI Technical Manuals (Volumes 1 

through 4) located in the X-ray Image Processing Group's laboratory. These 

manuals provide detailed information about individual tools available to the 

HAPPI programmer, and include all of the source code for the program as it 

stood at the end of the project's funding on June 30, 1990. At this writing, the 

source code referenced in this chapter resides in hard disk storage on the 

Stellar GS1025 graphics supercomputer in the X-ray Image Processing 
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Group’s laboratory. The hostname of this computer is “fuji.ee.iastate.edu” 

(with Internet address 129.186.5.211), and the source code is located in the 

directory Ihomelcatdlsrc. As this directory’s access is restricted, it will be 

necessary for system users who wish to modify HAPPI to contact a system 

administrator to request write priveledges for the directory. 

4.2 Required Programming Background 

The main requirements for adding image processing code to HAPPI are 

proficiency in the C programming language and basic familiarity with the 

UNIX operating system (e.g., ability to log on to the system, edit, move, copy 

and rename files, and traverse the directory hierarchy). In particular, a 

good grasp of the following programming concepts is essential to extending 

HAPPI: Data types and type conversions, C function declarations, function 

return values, looping and decision constructs (especially the switch 

construct), pointers and arrays, the C preprocessor, structures, unions, 

enumerated data types, and dynamic memory allocation/deallocation. Brief 

explanatory remarks summarizing important concepts are included 

throughout to help the reader unfamiliar with C follow the discussion. 

However, it is beyond the scope of this document to provide a tutorial on C that 

will bridge the gap for the non-C programmer. The reader is referred to the 

bibliography for a sample of the many C and Unix texts available. These 

references, particularly Kemighan and Ritchie (1988), should be consulted 

for formal definitions of the C concepts mentioned in this document. The 

Kemighan and Ritchie text is considered to be the de facto specification of 
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the C language. Basic familiarity with the UNIX source-code-level debugger 

dbx is helpful for, but not essential to, the integration of new routines into 

HAPPI. A brief example of how to use dbx is given in Section 4.11. In 

addition, experience with using HAPPI will help the programmer to better 

understand the flow of program control and to anticipate the effects of each 

line of code in his/her programs. 

4.3 Flow of Control in HAPPI 

As previously discussed in Chapter 2, HAPPI's user interface is 

organized into a Main Menu and an Information Window (both of which are 

always displayed), and a set of Submenus and other various graphical 

windows (which are only displayed when activated by the user). We now 

describe the flow of program control behind HAPPI's user interface, 

particularly for HAPPI's Image Processing Main Menu item. 

When HAPPI is started, HAPPI's X Windows environment is set up, and 

all static data structures (those that remain constant for the entire time that 

the program is running), such as menu text, are initialized. HAPPI's main 

routine then draws the Main Menu and Information Window, and enters a 

loop waiting for mouse input from the user. The user must select one of the 

Main Menu items by positioning the mouse cursor over the item and clicking 

the left mouse button. Associated with each of the Main Menu items is a 

corresponding C function (i.e., a block of C code to which arguments may be 

passed; see the references on C for a formal definition of a C function) known 

as a "manager", which draws and removes submenus under the Main Menu 
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items, accepts and evaluates user input, and manages the different HAPPI 

functions grouped under that Main Menu item. We will refer to these 

managers as "menu managers" to distinguish them from a different type of 

manager to be discussed later in this section. Thus, the Image Processing 

Main Menu item has associated with it an "Image Processing menu manager", 

and similarly for the other Main Menu items. When the user selects a Main 

Menu item, program control is transferred to the appropriate menu manager. 

This chapter will discuss only the Image Processing menu manager and its 

various subordinate managers, as these are the only managers that need 

concern the programmer adding new image processing algorithms to HAPPI. 

The flow of control at the highest level in HAPPI is illustrated in Figure 4.1. 

Figure 4.1. Flow of control in HAPPI at the highest level 
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HAPPI's image processing functionality is built in several layers. In 

the present version of the source code, there is an unfortunate similarity 

between the name of the Image Processing menu manager and the name of 

one of its subordinate manager functions which does not manage menus, but 

rather executes calls to individual image processing algorithms, and the 

programmer is cautioned against getting the two confused. The top layer of 

HAPPI's image processing functionality, the Image Processing menu 

manager, is a function called /mg Process_Manager() (note: the parentheses 

appended to the function name are how the C language indicates that 

something is a function as opposed to, say, a variable), which is called from 

the main program loop when the user selects the Image Processing Main 

Menu item. The menu manager Img_Process_Manager() displays the "Image 

Processing" submenu under the Image Processing Main Menu item and 

enters a loop waiting for additional mouse input from the user. 

The user may then select one of several categories, or classes, as termed 

in HAPPI's source code, of image processing algorithms from the Image 

Processing submenu. There is a separate menu manager which in turn 

handles each of the image processing classes. For example, if the user selects 

the Noise Filters Image Processing submenu item, control is passed from 

/ m g _P r o c e s s _M a n a g e r () to the subordinate menu manager 

Noise_Filters_Manager(). Each menu manager for an image processing class 

displays a sub-submenu whose items are the image processing routines for its 

particular class, and similarly enters a loop waiting for additional mouse 

input for a sub-submenu selection. 
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For some of the managers, there are additional submenu layers. For 

example, when the user selects the Image Analysis menu item from the 

Image Processing Menu, control transfers to the function 

Img_Analysis_Manager(), which displays the sub-submenu for the class 

Image Analysis and waits for mouse input from the user for a particular sub¬ 

submenu selection. If the user selects Image Measurement from this sub¬ 

submenu, control is then passed to another subordinate menu manager, 

I mg _M easurement Manager!), which displays a sub-sub-submenu of image 

measurement menu selections and waits for mouse input for a particular 

selection. The extension to deeper nesting levels of additional submenus is 

similar. 

The switch construct in C provides selective execution of multiple 

functional blocks of code based on a single condition (see the C references for 

a formal definition of switch) as follows: The integer expression in 

parentheses following the keyword switch is evaluated, and the list of case 

labels following the switch is examined one by one until the constant integer 

expression following the word "case" in the case label matches the value of 

the integer expression following switch, whereupon all code following the 

matching case label is executed. The function /mg_Process_Manager() and 

all of its subordinate menu managers (e.g., Noise_Filters_Manger(), etc) taken 

together may be conceptualized as a large nested switch construct as 

illustrated in Figure 4.2. All text between "/*" and "*/" is a comment and not 

part of the code (e.g., /* This is a C comment */). The outer layer of this 

switch construct, I mg _P rocess _Manager() "switches" on the user's selection 

from the Image Processing submenu, executing code following the matching 
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case label, which passes control to a subordinate menu manager that is itself 

essentially a switch construct and which in turn switches on the user's 

selection from the sub-submenu displayed by the subordinate menu manager. 

When the user selects a menu item that is at the bottom of the menu 

hierarchy (i.e., has no submenus beneath it), the appropriate image 

processing algorithm is called by the manager which currently has program 

control. 

When the user selects a particular algorithm for execution, the menu 

manager which currently has program control, as part of the "Code to execute 

algorithm" shown in Figure 4.2, prompts the user for the input image(s), and, 

in some cases, performs some error checking on these images when the 

selected algorithm requires input images of particular dimensions or data 

types. In most cases, the manager then calls the selected algorithm through a 

call to the function /P_manager(). The reader is cautioned against confusing 

the function IP_manager() with the function / mg _P roc e s s _M anage r(), as 

mentioned above. IP_manager() is different from /mg_Process_Manager() 

and its subordinate menu managers in that, among other things, 

IP_manager() does not itself display further menus and switch on user input. 

The function IP_manager() and all of its support functions (to be discussed 

below) will be collectively referred to as the "Image Processing Manager", as 

distinguished from the image processing menu manager, 

ImgProcess _Manager(). 

The Image Processing Manager is itself structured in three main 

layers. The outermost layer, IP_manager() itself, prepares for execution of 

an image processing algorithm by setting up a return location in its code to 



www.manaraa.com

64 

which control will return in the event that an image processing algorithm is 

aborted. / P _manager() then calls, in sequence, two other functions, 

GetParams() and CallIP(), which constitute the second layer of IP_manager(). 

The third layer of IP_manager() consists of various support routines called by 

GetParams() and CallIP(). 

/* Top level: Img_Process_Manager() */ 

switch(User selection from Image Processing submenu) 

( 
case (1st submenu item) : 

/* 1st submenu manager */ 
switch(User selection from sub-submenu 1) 

{ 

case (1st sub-submenu item) : 
(Code to execute algorithm) 

case (2nd sub-submenu item) : 
(Code to execute algorithm) 

case (i-th sub-submenu item) : 
(Code to execute algorithm) 

default: 
(Default code) 

} 

case (2nd submenu item) : 
/*2nd submenu manager */ 

switch(User selection from sub-submenu 2) 

( 
case (1st sub-submenu item) : 

(Code to execute algorithm) 
case (2nd sub-submenu item) : 

(Code to execute algorithm) 

etc. 

Figure 4.2. Nested switch construct structure of Img_Process_Manager() 
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The function GetParams() prompts the user for input parameters for 

the selected algorithm and places the user's inputs into a global "parameter 

block"; the parameter block is called /Pparam, and is a C structure variable. 

Structure variables are compound data types that are custom-defined by the 

programmer. Structure variables are used to group together several pieces of 

data - usually when these data are of different types (e.g., integer, character, 

and floating point) - as a single entity. For example, in a program to keep 

track of hospital patients, a programmer might define a "patient" structure 

variable, which groups together different types of information about a 

patient, such as name, address, blood type, height, weight, etc. using a 

collection of integer, character, and floating point data. The fields, or 

"structure members", as they are termed in C, in IPparam are a scries of 

character, integer, floating-point, image, and array variables which store the 

current default input parameters for all of HAPPI's image processing 

algorithms. The function CallIP() makes the call to the actual image 

processing algorithm, passing the input parameters from the global 

parameter block, IPparam, to the algorithm. This layered structure of the 

Image Processing Manager was chosen to facilitate flexibility in 

implementation of HAPPI's built-in macro language; the macro language can 

bypass the parameter fetching, calling the image processing algorithms 

directly. Two arguments, the class and subclass of the processing algorithm 

to be executed are passed to IP_manager(). The class refers to the submenu 

under which an algorithm is found, and the subclass refers to the particular 

algorithm from that submenu. Thus, for example, the "Mathematics" selection 

from the Image Processing menu is an example of a class, and the "Add 
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Images" selection from the Mathematics menu is an example of a subclass. An 

optional third argument, subclass2, may also be passed to IP_manager(), but it 

is currently not used. Both GetParams() and CallIP() are passed the class, 

subclass, and subclass2 arguments from IP_manager(), and "switch" on these 

arguments in much the same way as the menu managers switch on the user's 

mouse input. 

GetParams() switches on the class argument, and calls a support 

routine for that particular class, passing the value of subclass to the support 

routine. The names of the support routines are derived from the name of the 

particular class and prefixed with "P_" (the "P" derives from "parameter 

fetching"); for example, the support routine for the class mathematics is 

called "P _Math()". The support routine called by G etP arams() for the 

particular value of class then switches on the value of subclass passed to it 

and calls the specific parameter fetching routine for the selected class and 

subclass. The parameter fetching routine then displays menus and windows 

for the user to enter input parameters, and updates the global parameter 

block IP par am to reflect user input. When the user is satisfied with the 

values of the input parameters for the selected algorithm, and clicks "OK" on 

the parameter menu displayed by the parameter fetching routine, program 

control is transferred from the parameter fetching routine back up the 

hierarchy to the support routine, then to GetParams(), and back to 

IP _manager(). 

Once control returns from GetParams(), IP_manager() calls CalllPO, 

again passing the value of the class and subclass arguments. Within CalllPO, 

a "destination image" is created and given a default name based on the name 
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of the "source image" for the routine. The "source image" is the image data 

structure that has been selected by the user as an input image for the 

algorithm to be executed, and the "destination image" is the image data 

structure in which the output image from the algorithm will be written. 

Until a processing routine has successfully (without encountering an error 

or being aborted by the user, for example) completed, the destination image is 

considered a temporary entity, to be immediately erased on unsuccessful 

completion of a processing routine. The variables temp_img and temp _img2 

are defined in the file Globals.h as global image pointer variables, and are 

used to point to the destination image(s) during image processing; their 

values are then assigned to destination image pointers in the global 

parameter block / P p ar am only after a processing routine completes 

successfully. The image pointer temp_img is assigned to point to the first 

(temporary) destination image within CallIP(). If a processing routine 

produces two output images, the second destination image is created in a 

support routine (to be discussed below) called by CalllP(), and in the support 

routine, the image pointer temp_img2 is assigned to point to the second 

(temporary) destination image. After creating the first destination image and 

assigning its address to the pointer temp_img, CallIP() then "masks out", or 

suppresses mouse input and activates abort trapping; the mouse input 

masking is done to prevent buildup of useless mouse input during execution 

of an image processing algorithm. The activation of abort trapping allows 

the user to cancel an image processing operation in the event that, for 

example, the processing takes longer than the user is willing to wait, or the 

user accidentally started the processing with incorrect input. 
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Next, CallIP() switches on the class argument and calls a support 

routine for the particular value of class, passing the value of subclass to the 

support routine. The names of the support routines are derived from the 

names of the corresponding classes and prefixed with a "C_" (the "C" derives 

from "Call image processing routine"). For example, the support routine for 

the class mathematics is called "C_Math()". The support routine called by 

CalllP() for the particular value of class then switches on the value of 

subclass passed to it and calls the specific image processing routine for the 

selected class and subclass. If the processing routine to be called produces 

two output images, the code following the case label for the particular routine 

creates the second destination image before calling the actual routine. Input 

parameters of the algorithm are passed to the routine as function arguments 

rather than having the individual routines read the parameters directly from 

the global parameter block; this was done to allow the macro language to 

work more flexibly with the image processing routines. On successful return 

from an image processing routine, control returns back up the hierarchy to 

the support routine, CalllP(), /P_manager(), the menu manager which called 

IP_manager(), Img_Process_Manager(), and hence back to the main loop. 

Some additional tasks are performed on the way back up the hierarchy. 

For example, before CalllP() returns control to /P_manager(), it deactivates 

abort handling, "masks in" (i.e., stops suppressing) mouse input, and assigns 

the value(s) of the temporary image pointer(s) temp_img and temp_img2 to 

the destination image pointers in the global parameter block IPparam. Also, 

before IP_manager() returns control to the menu manager which called it, it 

either scales or clips the destination image according to the values of two flag 
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variables, the overflow and underflow flags, in IPparam. The destination 

image is created with pixels of data type int, which is (on most computer 

systems) a 2-byte signed integer and may thus take values from 

approximately -32000 to +32000. This is done to prevent the wraparound 

errors that may occur when storing the results of operations on 1-byte 

numbers in a 1-byte variable. For display as a grey-scale image, the pixels of 

the destination image must be converted to the type unsigned char which is 

(on most computer systems) a 1-byte unsigned integer and may thus take 

values from 0 to 255. The conversion may be done cither with scaling or 

clipping. Also, on successful return from /P_manager(), the menu manager 

which called IP_manager() adds the destination image to a data structure 

known as the "image buffer" which keeps track of all images in memory and 

whether or not they are currently displayed on the screen. The function 

which adds the destination image to the image buffer also automatically 

displays the image on the screen. 

The hierarchical structure of HAPPI's image processing functionality 

is summarized by Figure 4.3. The figure is interpreted as follows: The first two 

layers represent the Image Processing menu manager and its subordinate 

menu managers, respectively. The remaining layers represent the structure 

of the Image Processing Manager. The top of the figure corresponds to the 

highest level of hierarchy. Program control passes both up and down 

between blocks, but does not cross vertical lines. Thus, for example, program 

control does not pass directly from GetParams() to CallIP(), but rather passes 

up to IP_manager() from GetParams() and then back down to CallIP(). 
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lmg_Process_ _Manager() 

Menu managers for each class 

IP_manager() 

GetParams() Cal 11P () 

Support routines Support routines 

Parameter fetching routines Image processing routines 

Figure 4.3. Hierarchical structure of HAPPl's image processing functionality 

4.4 HAPPI Data Objects 

In order to access, move, and alter data efficiently, HAPPI makes liberal 

use of the data type definition capabilities of the C language. Several 

structure, union, and enumerated data types are defined within HAPPI to 

allow the programmer to refer to complex data objects, such as images and 

convolution masks, with a single variable name. This section will discuss the 

data structures defined in HAPPI that are relevant to the addition of image 

processing routines to the program. These include images, templates, the 

global parameter block, the image buffer, and the "class" and "subclass" 

variables that are passed to IP_manager(). 
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HAPPI's image data structure includes not only pixel intensity values, 

but a variety of other information as well, including the image's name, its 

processing history (a data structure nested within the image data structure 

which records all processing steps that have been performed on the image 

since the raw image data was acquired), its height and width, the data type of 

its pixels (e.g., 1-byte unsigned integer, 2-byte signed integer, floating-point, 

etc.), its global statistics (e.g., max, min, mean, etc. of the entire image), a set 

of flags indicating which of the above fields are defined (i.e., have valid data), 

and a flag indicating whether the image has been saved to disk or if it exists 

only in volatile memory. The definition, or structure template, for HAPPI's 

image data structure is found in the file "images.h". The typedef statement in 

C is used to establish another name for a data type, and is most often used to 

define shorthand names for programmer-defined data types such as structure 

and union variables. A typedef statement is used in images.h to define the 

word IMAGE (note that C is case-sensitive, so that "IMAGE" is different from 

"image" in C) as data type "pointer to an image structure variable". This 

means that when we make a declaration such as: 

IMAGE s_imagel; 

in a piece of code we are writing for HAPPI, the variable s_imagel is declared 

as a pointer to an image structure variable. A pointer is simply a variable 

which holds the address of a piece of data; thus, s_imagel in the above 

example holds the address of, and thus "points to", an image structure 

variable. The reader is referred to the file images.h (or to a hardcopy of this 
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file in the section "Headers" of the HAPPI Technical Manual, Volume 1) for a 

complete definition of HAPPI's image data structure. All defined data types 

that are used as structure members of the image data structure are also 

defined in the file images.h, with the exception of the defined type HISTORY, 

which is defined in the file "history.h". The HISTORY defined data type is a 

special kind of structure variable known as a linked list node, and is used to 

store a single entry in the image structure's history structure member. 

It is not necessary for the programmer to work directly with the 

structure members of an image structure variable, as a number of utility 

functions, discussed in the next section, are provided in HAPPI for reading 

from and writing to the image data structure. The reader should, however, 

refer to the image structure definition in the file images.h when there is any 

question as to the data types of the various structure members. 

Convolution masks, or "templates" as they are called in HAPPI's code, 

are defined as structure variables in much the same way as images. The word 

TEMPLATE is defined with a typedef statement as data type "pointer to template 

structure variable", and so when we write a declaration such as: 

TEMPLATE lowpass; 

we are declaring the variable lowpass as a pointer to a template structure 

variable. The structure definition for templates is also found in the file 

images.h. As HAPPI's template structure variables are not as large as its 

image structure variables and are less commonly used in the program, there 

are no utility routines for manipulating template structure variables; the 
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programmer must access the structure members of template structure 

variables directly in his/her code. For example, to reference the "hot_row" 

member of a template structure variable which is pointed to by the pointer 

variable lowpass, we would write "lowpass -> hot_row", where we have used 

the structure member notation pointer_to_structure_variable -> structure 

member. (Note the difference between this example and the structure 

member reference in the previous example using the "dot" notation; the dot is 

used with structure variables, while the "minus-sign-greater-than-sign" 

notation, ->, is used with pointers to structure variables.) The hot_row and 

hot col members of the template structure refer to the row and column 

numbers, respectively, of the origin of the template and thus determine 

which template cell which will serve as the convolution sum accumulator in 

convolution operations. The size member refers to the number of rows or 

columns of the (square) template. The kind member refers to the data type of 

the template weights, integer or floating point. The i nt _te mp late and 

float _template members are pointers to integer and floating-point matrices, 

respectively, of the template weights themselves. The denom member refers 

to "denominator"; in HAPPI's convolution routine, when a convolution sum is 

accumulated into the accumulator cell, it is divided by the value of denom 

before being written into the destination image. 

As discussed in the previous section, input parameters for all of 

HAPPI's image processing algorithms are stored in the global parameter 

block IPparam. This structure variable is declared in the file "Globals.h". The 

programmer adding image processing routines to HAPPI will likely need to 

add to this structure definition. The structure tag, that is, the name used as 
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shorthand for the structure template, is called "param”. The structure 

template is simply the list of structure members and their data types. The two 

declarations shown in Figure 4.4 are excerpted from the file Globals.h, and 

are an abbreviation of the declaration of IPparam. 

struct param { 
IMAGE s_imagel, 

s_image2, 
d_imagel, 
d_image2; 

char peak_name[20], 
conv_name[20]; 

int max, 
min, 

bmsize; 
long int seed; 
short overflow_flag, 

structure; 
char logic_val, 

fit_type; 
float snratio, 

bmvar; 
TEMPLATE conv_temp 1; 

extern struct param IPparam; 

Figure 4.4. Abbreviated declaration of global parameter block in Globals.h 

The line beginning with struct is the start of the structure declaration 

which assigns param as a structure tag for the structure template, which 

consists of everything between the left and right curly braces (e.g., 
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{everything in here is a structure template}). The line beginning with 

extern declares IPparam as a structure variable using the template referred 

to by the tag par am. The modifier extern, which stands for "external", makes 

the IPparam structure variable accessible from all parts of the program. 

Thus, from any point in HAPPI's code, we may refer to the image pointer 

s_imagel in the global parameter block using the structure member notation 

"IPparam.s_imagel". Similarly, we would refer to the integer max using the 

notation "IPparam.max". 

The data types of the class and subclass variables which are passed to 

IP _manager() are "enum", that is, they are enumerated types. The data type 

enum allows the C programmer to conveniently assign a set of descriptive 

names to the integer values that may be taken on by an integer variable. 

These assigned names may then be used in relational tests and assignment 

statements involving the variable. As an example, consider the following 

declaration: 

enum (no, yes) answer; 

The variable answer is an integer variable, however, after writing the above 

declaration, we may compare it to or assign it the values 'yes' and ’no'. Thus, 

we may write: 

answer = yes; 
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instead of: 

answer = 1; 

and: 

if(answer == yes) 
(execute this code) 

instead of: 

if(answer == 1) 
(execute this code) 

The C compiler assigns integer values to the enumerators ’yes’ and 'no', but 

this is transparent to the programmer. The integer values in the enumerator 

list (everything between the curly braces) may be explicitly specified by the 

programmer, if desired. This option is used in HAPPI. Two typedef statements 

are used in the file Globals.h to define the words IP_CLASS and IP_SUBCLASS 

as enumerated types for the entire list of image processing algorithm classes 

and subclasses, respectively, and integers are explicitly assigned to each class 

and subclass name. The data type declarations: 

IP_CLASS class; 
IP_SUBCLASS subclass; 

thus declare the variables class and subclass as enumerated types with the 

enumeration lists defined in Globals.h. The programmer adding processing 



www.manaraa.com

77 

routines to HAPPI will need to add to this enumeration list and so should 

familiarize him/herself with it. 

The image buffer is a data structure in HAPPI which holds image 

structure pointers and keeps track of the display status of all images in 

memory (images loaded into the computer system memory by HAPPI may be 

displayed on the screen or "hidden" from view to reduce screen clutter). The 

image buffer is a structure variable named "buf", consisting of three arrays: 

an integer array, called index[], of indices used to assign a unique number to 

each image in the buffer, an array of image pointers, called images[ /, (of 

defined data type IMAGE), and a character array of status indicators, called 

valid[], (In C, arrays are addressed using the array offset in square brackets 

following the array name.) As character variables are treated as 1-byte 

integers in C, the display status indicators in the image buffer may be 

assigned integer values between -128 and 127. A value of 0 is assigned to a 

status indicator if the entry in the buffer is empty or has been vacated by an 

image that has been removed from memory. A value of 2 is assigned to the 

indicator if the image is currently in memory and displayed; a value of 4 is 

assigned if the image is currently in memory but not displayed. The structure 

member notation buf.index[i] then refers to the index of the image in the i-th 

location of the image buffer; buf.images[i] refers to the image pointer in the 

i-th location of the image pointer, and buf.valid[i] refers to the status 

indicator of the image in the i-th location of the image buffer. The image 

buffer is a global variable, and is declared in the file Globals.h. The 

programmer adding image processing routines to HAPPI may occasionally 

find it necessary to search the image buffer to retrieve an image pointer 
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corresponding to an image index; image indices are returned by certain 

utility functions in HAPPI. 

4.5 Tools for Manipulating Image Data 

As mentioned above in the discussion of HAPPI's image data structure 

(Section 4.4), a number of utility functions are provided within HAPPI to 

manipulate image structure variables. This section will give a general 

discussion of these utilities; the reader is referred to the "Image Operations" 

sections of the HAPPI Technical Manual, Volume 1, for the details. The source 

code for all of these functions is found in the file "iops.c". 

The first group of functions to be described will be referred to as the 

image structure member read/write/test functions, or "image structure 

access functions" for short. Recall that HAPPI's image data structure 

includes, among other things, the image's name, height and width, and a set 

of global image statistics. The image structure access functions are used to 

read from, write to, and test the validity of members of the image data 

structure. We may test the validity of the global image mean, for example, 

using the image structure test function test_mean(). This function is passed 

an image pointer (data type IMAGE) and returns a long (4-byte on most 

computer systems) integer equal to 0 if the image mean is not defined, and not 

equal to 0 if it is defined. Similarly, the function get_mean() is passed an 

image pointer, and returns the image mean as a float value. If the value of 

the image mean has not been calculated and initialized, the value returned by 

get_mean() will be meaningless (no pun intended). Thus, if we want to 
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retrieve the mean value of an image, we should first test its validity with 

test_mean(). The function put_mean() is passed an image pointer and a 

floating-point value, and writes the floating-point value to the image mean 

structure member. The image structure access functions are all named 

similarly, with prefixes "get_", "put_", and "test_" for the functions to read, 

write, and test, respectively, the various image structure members. 

Another group of functions that accesses image data structures are the 

statistics calculating functions. These functions are passed an image pointer, 

and calculate the values of the various image statistics defined in HAPPI's 

image data structure, then write the calculated values to the appropriate 

image structure members. For example, the function find _min _max() is 

passed an image pointer, and finds the global minimum and maximum of the 

image and writes these values to the image structure members min and max, 

respectively. 

Memory space for image structures is allocated and deallocated by the 

image allocation functions. The functions g r ey _s c a l e _i ma g e () and 

lar ge _scale _image() allocate memory for images with 1-bytc unsigned 

integer pixels and 2-byte signed integer pixels, respectively, and initialize all 

fields to undefined values. The image thus created may then have data 

assigned to it, for example from the output of an image processing algorithm. 

The function dispose_of_image() is passed a pointer to an image pointer, and 

frees the memory used by the image, making it available to the host computer 

system again. This function does not take care of saving the image, so care 

should be exercised in its use. The functions c r e a te _ma t r ix() and 

remove_matrix() allocate and deallocate, respectively, the memory for image 
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pixel data. Recall that the image pixel data may be one of several types; the 

structure member kind in the image structure indicates this data type. These 

two functions examine the kind structure member of the image, using an 

image structure access function called get_kind(), to determine how much 

memory to allocate/deallocate. 

Three image pixel data type conversion routines, 

convert_grey_to_large(), c o nv e r t _lar g e _t o _g r ey _by _c lip (), and 

convert_large_to_grey_by_scale() are provided in HAPP1. Recall that before 

CallIP() makes the call to the image processing routine selected by the user, it 

creates a "destination image" where the routine writes its output. (Note: In 

some cases, a second destination image is required; the second destination 

image is usually created in the support routine called by CallIP().) The 

destination image is created as what is called a "large scale image" in HAPPI; a 

large scale image is simply an image whose pixels are 2-byte signed integers 

(and may thus take values from approximately -32000 to 32000). This is done 

to avoid overflow and/or underflow within image processing algorithms. 

When a destination image is to be displayed, however, it must be converted to 

what is called a "grey scale image" in HAPPI; a grey scale image is simply an 

image whose pixels are 1-byte unsigned integers (and may thus take values 

from 0 to 255). The pixel data type conversion routines provide the 

conversion capabilities needed to work with the above two types of images. 

Four image copy functions, copy_image(), copy_image_header(), 

copy_partial _ma.tr ix(), and copy_matrix(), are provided to copy various 

amounts of an image structure to another image structure. These functions 
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are currently only used by the macro language, but may be used within 

image processing algorithms as well. 

4.6 Image Processing Support Functions 

A number of functions routinely needed in image processing 

algorithms are provided in HAPPI by a set of image processing support 

routines. Such functions include memory allocation and deallocation for 

matrices and vectors, clearing and setting the overflow and underflow flags, 

random number generation, general n-dimensional forward and inverse 

Discrete Fourier transforms, matrix inversion, max and min operations, and 

sorting. This section gives a brief summary of these functions. All of the 

source code for these functions is located in the file IProutines.c, and 

documentation for these routines is in the "Support Routines" section of 

Volume 2 of the HAPPI Technical Manual. 

The set of memory allocation and deallocation routines for matrices and 

vectors allows the user to create and destroy matrices and vectors of data 

types int, long (4-byte integer), and float. The allocation routines are named 

with the prefix "make_", followed by a letter 'i', T, or no letter (for int, long, 

and float, respectively), followed by the word "matrix" or "vector". For 

example, the routine make_ma.trix() allocates a matrix of float values; the 

routine make_imatrix() allocates a matrix of int values. The desired starting 

and ending indices of the matrix or vector are passed to the routines, and the 

routines return pointers to the appropriate data types. The ability to specify 

the starting and ending indices of matrices and vectors instead of just their 
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dimensions allows the programmer to use whatever array addressing scheme 

is most appropriate to the problem at hand. The names of the deallocation 

routines are similar to their allocation counterparts, with "make" replaced by 

"free"; the function free_matrix(), for example, frees a float-valued matrix. 

The return types of these functions are declared in the file "IProutines.h". 

The four functions clear _underflow(), c l e ar _ov e rflow (), 

set_underflow(), and set_overflow() clear and set the underflow and overflow 

flags in the global parameter block. Recall that the values of these flags 

determine whether the large-scale destination image is clipped or scaled for 

display. The programmer would use these routines in an algorithm, for 

example, by examining the destination image for values outside the grey¬ 

scale image range of 0 to 255 and setting the flags according to the desired 

action before passing control back to the calling routine. If either the 

overflow or underflow flag is set, the destination image will be scaled for 

display; otherwise it will be clipped. If the destination image was required to 

always be scaled for display, the programmer would unconditionally set one 

or both flags in his/her code. 

A group of mathematics routines rounds out HAPPI's image processing 

support functions. The routine matrix_inverse() calculates the inverse of a 

float-valued matrix of arbitrary dimensions using L-U decomposition and 

backsubstitution. The routine fourn() performs a general n-dimensional 

radix-2 forward or inverse fast Fourier transform. The routine gamlog() 

returns the natural log of the gamma function. The routine gasdev() returns 

zero-mean unity-variance gaussian deviates. The functions max() and mini) 

return the maximum and minimum, respectively, of an arbitrary number of 
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integer arguments. The function qcksrt() implements the Quicksort 

algorithm. The functions rand_u() and rand_p() return uniform and Poisson 

deviates, respectively. Except for max() and min(), the above mathematics 

routines are taken directly from, or adapted from, Press et al. (1988). 

4.7 A General Image Processing Routine Code Template for HAPPI 

As may be seen from the preceding discussion, HAPPI's image 

processing routines lie near the bottom of the hierarchy of the program's 

flow of control. Because of this, they are largely isolated from, and function 

independently of, the rest of the program. As mentioned before, this 

independence of image processing routines from the rest of the program was 

designed into HAPPI for flexibility in implementing the built-in macro 

language. The independence of HAPPI's image processing routines from the 

rest of the program also makes it relatively straightforward to code an 

algorithm for integration into HAPPI. This section presents a general image 

processing routine code template for HAPPI. 

The conventions, function calls, preprocessor control lines, and 

variable declarations used to code an algorithm for HAPPI are illustrated in 

the following code template in Figure 4.5. (The reader is cautioned not to 

confuse our use of the word "template" here with previous references to 

convolution templates. By "code template" we mean a generic, model piece of 

source code which is to be modified and added to by the programmer to 

generate image processing source code modules.) Note that the line numbers 

on the left side of the figure (and in all subsequent example code in this 
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document) are not part of the C source code file; they are included only so that 

each line of code may be referenced conveniently in the discussion. Also 

note that since lines of C code are terminated with a semicolon, a single long 

line 

#include "constants.h" 
#include "Globals.h" 
#include "errors.h" 
#include <stdio.h> 
#include <signal.h> 
#include "IProutines.h" 

1 

2 
3 
4 
5 
6 
7 

void Ne wrouti ne(s_i mage l,s_ image 2, d_image,argl ,arg2,arg3) 
/* Comments describing the routine */ 
IMAGE s_image 1, 

s_image2. 
d_image; 

int argl; 
float arg2; 
char arg3; 

8 GREY_SCALE_PIXEL **s_arrayl, 
9 **s_array2; 
10 LARGE_SCALE_PIXEL **d_array; 
1 1 int height, 
1 2 width, 
13 i, 
14 j; 
15 s_arrayl = get_grey_matrix(s_imagel); 
16 s_array2 = get_grey_matrix(s_image2); 
17 d_array = get_large_matrix(d_image); 
18 height = get_height(s_imagel); 
19 width = get_width(s_imagel); 
2 0 /* Your code goes here */ 
} 

Figure 4.5. General image processing algorithm code template for HAPPI 
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We now discuss the code template line by line. The lines beginning 

with "#include" are preprocessor control lines which simply tell the C 

preprocessor to copy the contents of the named files into the source code at 

the location of the #include line before attempting to compile the code. The 

files named in the #include lines contain the data type definitions and 

function declarations necessary for the C compiler to make sense of the 

function calls and type declarations used in the rest of the source code. Line 1 

begins the function header (i.e., the function name and the type declarations 

of its arguments); many of the image processing routines in HAPPI are 

declared as type void (meaning that the function itself does not return a 

value), however, if the programmer wishes to return a value, say, an error 

code, he/she should declare the routine as an int. The name of the routine is, 

appropriately, "Newroutine", and its argument list, including two source 

images, a destination image, and three algorithm parameters, follows in 

parentheses. The names of HAPPI's image processing routines begin with a 

single capital letter by convention; this is not a requirement, but helps 

programmers recognize an image processing routine as such. Lines 2 

through 4 declare the first three arguments to Newroutine() as data type 

IMAGE, which, recall, is a pointer to an image structure variable. Lines 5 

through 7 declare the algorithm input parameters argl, arg2, and arg3 as 

integer, floating-point, and character variables, respectively. The argument 

list of Newroutine() is representative rather than definitive. The 

programmer should add or delete arguments of the required data types as 

appropriate. The programmer should place all of the algorithm's required 

input parameters in the new routine's argument list; image processing 
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routines should neither need to access the global parameter block directly, 

nor should they prompt the user for inputs through the standard I/O device. 

Passing all algorithm parameters in the function argument list insures that 

the routine is truly a "black box" which, to do its job, needs only the set of 

arguments passed to it from wherever in HAPPI (e.g., Image Processing 

Manager or macro language) it is called. Exceptions to this rule include 

image processing routines which require the user to, for example, visually 

inspect the image and use the mouse to identify particular pixel coordinates to 

be used in the algorithm. In some of these cases, prompting for user input 

within the algorithm itself may be necessary; how to handle such cases is up 

to the programmer's judgement and creativity. 

Lines 8 and 9 declare the variables s_arrayl and s_array2 as data type 

"pointer-to-pointer to type GREY_SCALE_PIXEL". The defined data type 

GREY_SCALE_PIXEL is declared in Globals.h with a typedef statement as 

another name for the C data type unsigned char. This is the data type of a 

"grey scale image", as it is termed in HAPPI (Cf. Sections 4.4 and 4.5 above). 

Line 10 declares the variable d_array as data type "pointer to pointer to type 

LARGE_SCALE_PIXEL". LARGE_SCALE_PIXEL is also declared in Globals.h, as 

another name for data type short int, which is a signed integer of (at least, 

depending on the particular compiler) 2 bytes. This is the data type of a 

"large scale image". 

Lines 11 and 12 declare integer variables to hold the values of image 

height and width, respectively. If the algorithm uses source and destination 

images that are all of the same dimensions, then only one set of such 

variables is needed; otherwise, the programmer should declare as many 
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additional such variables as the algorithm and input data dictate. Lines 13 and 

14 declare a couple of general-purpose loop index variables; generally, at 

least one pair of these is needed for addressing the individual pixels of the 

source and destination image(s). Lines 15 and 16 make use of the image 

structure access function get_grey_matrix() to assign matrix pointers to the 

variables s_arrayl and s_a.rra.y2, respectively. After execution of these lines, 

the programmer may reference the image pixel data in s_imagel and 

s_image2 using the notations s_array 1 [i][j] and s_array2[i][j], respectively 

(where i the row number and j is the column number, both indexed from 

zero). Line 17 performs a similar task, and after its execution, the 

programmer may reference pixel locations in the (large scale) destination 

image, d_image, using the notation d_array[i][j]. Lines 18 and 19 use the 

image structure access functions get_height() and get_width() to assign the 

height and width, respectively, of s_imagel to the variables height and width. 

At this point, we may use the variables s_arrayl, s_array2, d_array, height, 

and width to perform some image processing task, which may be generalized 

by the code fragment in Figure 4.6. The code fragment of Figure 4.6 would be 

placed in the code template of Figure 4.5 at line 20. This code fragment 

assigns to every pixel in the destination image a value that is some function 

of the input image data and the algorithm input parameters argl, arg2, and 

arg3. In practice, most image processing routines will have more than three 

lines of processing code, but the code fragment of Figure 4.6 will likely be 

present in one form or another in any processing routine which returns a 

destination image. 
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for(i=0;i<height;i++) 
for(j=0;j<width;j++) 

d_array[i][j] = somefunction(s_arrayl,s_array2,argl,arg2,arg3); 

Figure 4.6. Code fragment generalizing image processing task 

The coding of the algorithm itself past line 20 of the template of Figure 

4.5 is, for the most part, independent of the rest of HAPPI, and is composed of 

pure C code and any functions written by the programmer. However, HAPPI's 

utility functions can and should be used to advantage to access image 

structure data fields and allocate/deallocate memory. The programmer is 

encouraged to examine the implementations of the algorithms already 

included in HAPPI for usage examples of the utility routines. The file 

"IProutines.c" contains the majority of HAPPI's image processing routines. 

The programmer is discouraged from defining any external (global) 

variables in his/her source code file; with more than one person modifying 

the program, it is easy to cause confusion when externals are declared in 

processing routines. If a global variable is deemed to be truly necessary, it 

should be declared in Globals.h. 

To avoid unnecessarily recompiling existing image processing code, 

new image processing routines under test are usually placed in a separate 

source code file from the file containing routines already included in HAPPI. 

Three files currently in use are IPtest.c, IPtest2.c, and IPtest3.c. These files 

contain the #include lines of the code template of Figure 4.5, and the names of 

these files are included in the "make file" for HAPPI. The make file is part of 

the UNIX make utility program; once the programmer places his code in a file 
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that is specified in the make file for HAPPI, recompiling the program to test 

the new code is as simple as typing "make" at the UNIX prompt in the source 

code directory. 

4.8 Handling Errors, I/O, and Other Details 

In this section, we provide some tips and directions on how to return 

error codes, handle source and destination images of differing sizes, fetch 

graphical user input of positional information, and write output to HAPPI's 

information window. 

Suppose that data-dependent error conditions may arise in an 

algorithm. Rather than returning a meaningless output image to the user, we 

would like to inform him/her of the nature of the error, so that more suitable 

data for the algorithm may be chosen. Error codes may be returned by all of 

HAPPI's image processing routines. By convention, HAPPI's error codes are 

all returned as negative integers. Thus, to return an error code from an 

image processing routine, the programmer would declare the routine itself as 

having the return type int (instead of void), and would return a negative 

integer on encountering the error condition in his/her code. The first 21 

negative integers are individually defined as specific types of errors; the 

definitions of these error types may be found in the file "errors.h". Thus, for 

example, if a divide-by-zero error occurred, we could indicate this by 

returning the value defined for divide-by-zero errors, -1, or we could 

optionally use the preprocessor macro defined in errors.h for this error and 

write return(DlVlDEBY ZERO); in our code at the appropriate spot, letting 
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the preprocessor take care of the text substitution. Since all of the levels of 

the Image Processing Manager return integer values, the error code will be 

propagated back up the hierarchy of function calls in the Image Processing 

Manager until its value is examined and the error is handled. Errors are 

usually handled by the menu managers under the Image Processing menu 

manager (recall that it is these managers that call IP_manager()); typically, 

the menu manager will check to see if the returned error code is negative, 

and if it is, makes a call to a generic error display routine called 

system_error(), passing it the error code. The routine system_error() uses 

the error code to look up a string defined for the particular error code in the 

file “errors.c” and displays an error message to the user. Another error 

display routine, display_error(), displays a simple text message, and is for use 

in handling error conditions which do not have an error code defined in the 

file errors.c. Both of the error display routines, sy stem _e r r o r () and 

display_error(), are found in the file errors.c. Other circumstances under 

which the programmer will likely want to use returned error codes are in 

memory allocation and matrix inversion; attempting to use unsuccessfully 

allocated memory will, at least, give meaningless results, and at most, will 

crash the program. The matrix and vector allocation routines described in 

Section 4.6 return a null pointer if the requested amount of memory cannot 

be allocated. 

Implementation of some image processing algorithms may involve 

different sized source (input) and destination (output) images. For example, 

the radix-2 FFT in HAPPI accepts input images of arbitrary dimensions up to 

512 by 512 pixels, zero-padding the input image to integer powers of 2 
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(independently in each spatial dimension), and outputs the magnitude of the 

frequency-domain image using the zero-padded dimensions. Since the 

destination image is created within the CallIP() routine of the Image 

Processing Manager with the same dimensions as the source image, routines 

that require different dimensions for source and destination images must 

destroy the destination image created by CallIP() and create their own 

destination image(s) with the required dimensions. An example of the code 

necessary to do this is shown in Figure 4.7. This code should be included, 

when necessary, in the processing routine itself as part of the “Your code 

1 char imgname[15]; 
2 get_name(d_image,imgname); 
3 dispose_of_image(&d_image); 
4 d_image = large_scale_image(); 
5 make_not_current(d_image); 
6 put_name(d_image,imgname); 
7 create_matrix(newheight,newwidth,d_image); 
8 d_array = get_large_matrix(d_image); 

Figure 4.7. Code fragment to destroy original destination image and create 
new one 

goes here” section of the code template of Figure 4.5. The code fragment is 

discussed here line-by-line. Line 1 is not an executable statement, but rather 

a declaration of the string img name, and is included for clarity. Line 2 

fetches the name of the destination image from d_image and places it in 

imgname. Line 3 destroys the destination image that was created by CallIP() 

before program control was passed to the processing routine. Line 4 creates a 

new large scale destination image; the image pointer d_image points to the 

new image. Line 5 sets the destination image structure member current to a 

nonzero integer, to indicate that the new destination image is not current, 
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that is, it is not saved on disk. Line 6 places the name of the destination image 

taken from the old destination image and places it in the new destination 

image. Line 7 allocates the memory for the image pixel data in the new 

destination image using the new dimensions, newheight and newwidth. The 

new image dimensions are completely up to the programmer; typically, they 

are calculated from the input image dimensions. For example, the Fast 

Fourier transform routine uses the input image dimensions to calculate the 

destination image dimensions as the smallest integer power of two greater 

than or equal to the source image dimensions. Line 8 assigns the matrix 

pointer to the destination image pixel data to the pointer d_array, allowing 

the programmer to reference the pixel in the i-th row and j-th column of the 

destination image as d_array[i][j]. 

For some processing applications, it is useful to allow the user to, while 

viewing an image, use the mouse to specify a particular point or region of the 

image as input to a processing routine. An example would be allowing the 

user to graphically "draw" the boundary of an image region which contains 

pure noise and no signal; the image data in this region may be used by the 

processing routine to calculate noise process statistics for use in filtering 

noise from the image. Such cases may be handled by using what will be 

called HAPPI’s “rubberband utility functions”, so named because they allow 

the user to draw a line or box on the computer display which is dynamically 

sized according to mouse input from the user. There are several rubberband 

utility functions defined in the file "Image_Xl.c." Two of the most commonly 

used rubberband routines in HAPPI are RubberBand() and 

R ub b e r B a nd L i n e (). The function R ub b e r B a n d() is used to define a 
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rectangular region in an image. Upon invocation, the function is passed 

pointers to variables for the image buffer index, row and column position of 

the initial corner of rubberband box, and height and width of the box. The 

function monitors mouse input until it detects that the user has depressed and 

released the left mouse button, whereupon control returns to the calling 

routine, and the variables whose addresses (i.e., pointers) were passed to the 

function contain the desired information. The function RubberBandLine() is 

similar, but passes back, again by using pointers, the coordinates of the 

endpoints of the line specified by the user. Upon return from one of the 

rubberband functions, the programmer usually needs to search the image 

buffer to find the image pointer corresponding to the image index returned 

by the function. The reader is referred to the code for extracting arbitrary 

image cross-sections and subimages in the function 

Img_Analysis_Manager(), found in the file Managers.c, for examples of how 

to use the rubberband utility functions and of how to search the image 

buffer. 

Text may be written to HAPPI's information window using the function 

Write!nfoWindow(), and individual lines in the information window may be 

cleared using the function ClearlnfoLine(). These functions are both defined 

in the file "Info_Xl.c". The programmer may use the information window to 

communicate a variety of information to the user, including: detailed prompts 

for input, displaying the current processing status of compute-intensive 

routines with long execution limes, and issuing error messages for incorrect 

algorithm input parameters. Examples of the use of these routines may be 

found throughout HAPPI's code, especially in the menu managers for the 
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various image processing classes, found in the file Managers.c, and in the 

image processing routines themselves, which are found in the file 

IProutines.c. 

4.9 User Interface Window Types and Management Tools 

As fetching of input parameters is almost always done outside of 

HAPPI's image processing algorithms, a separate parameter fetching routine 

must be written for each image processing routine. The parameter fetching 

routine uses several types of windows to present a graphical interface to the 

user. This section discusses the types of windows typically used by the 

parameter fetching routines, and the utilities in HAPPI that create, alter, and 

destroy these windows. 

The first thing done by the parameter fetching routine is to display the 

current default values (stored in the global parameter block) of the algorithm 

input parameters. These values are displayed in what is called a "menu 

window" in HAPPI. Menu windows display a list of strings, and have an 

identifiable space, or "sub-window", (with its own border) for each string in 

the list. HAPPI's main menu and submenus are all drawn using menu 

windows. Two routines which create and destroy menu windows are called 

CreateAndDisplayMenu() and RemoveMenu(), respectively; these routines are 

defined in the file "Menu_Xl.c". 

The parameter fetching routine uses what is called a "value window" in 

HAPPI to read user input of integer and floating-point input parameters. A 

value window is divided into seven sub-windows; a title sub-window 
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displaying the name of the parameter to be altered, a sub-window displaying 

the current value of an input parameter, a sub-window displaying the word 

"OK", and four sub-windows containing graphical "arrows". If the user clicks 

the left mouse button on one of the arrows, the parameter value currently 

displayed will be incremented or decremented by either a large or small 

amount, depending on which arrow the user clicks the mouse. The size of the 

large and small parameter increments and decrements is determined by the 

programmer. When the user is satisfied with the value of the input 

parameter, he/she clicks the left mouse button on "OK", the routine which 

created the value window destroys the window and exits, and the parameter 

entered by the user is placed in the global parameter block IPparam. Two 

routines used to create value windows for fetching integer and floating-point 

input parameters are GetValueFromWindow( ) and 

GetFloatValueFromWindow(), respectively. These routines are defined in the 

file "Value_Xl.c". 

As mentioned previously in Section 4.8, the programmer may use the 

Information Window at the bottom of HAPPI's screen to display prompts and 

useful information to the user. The information window may be accessed by 

the programmer from anywhere in HAPPI's code (using the functions 

WritelnfoWindow() and ClearlnfoLine()). Thus, the programmer may also 

make use of the information window within the parameter fetching routine 

to, for example, notify the user of input parameter constraint violations. 

For image processing algorithms that employ an entire two- 

dimensional array as an input parameter (e.g., convolution kernels, matched 

filter templates, and morphological structuring elements), HAPPI has 
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available to the programmer what are called "mask value windows". These 

windows allow the user to individually specify the elements of a two 

dimensional array for use in such algorithms. The routine 

DisplayMaskMatrixMenu(), defined in the file "Menu_Xl.c", creates and 

displays a mask value window of programmer-defined size. Three higher- 

level routines, user_binmask(), user_cmask(), and user_grmask(), make use 

of DisplayMaskMatrixMenu() to fetch masks of different data types from the 

user. These three routines are defined in the file "IPparams.c". 

One of the most important routines in HAPPI is the function 

ActionMonitor(), which is defined in the file "User_Xl.c". ActionMonitor() is 

used extensively throughout HAPPI to monitor the user’s mouse and keyboard 

activity. ActionMonitor() is called with three pointer arguments which point 

to "index", "action" and "value" integer variables. The function does not 

return until the user enters a mouse button click or presses a key on the 

keyboard. Upon return from ActionM o nitor(), the index variable contains 

the index of the window where the mouse cursor was located when the input 

was entered, the action variable contains the type of action detected (mouse 

button click or keyboard input), and the value variable contains the value of 

the input (which mouse button was pressed or which key on the keyboard 

was pressed). Documentation for this routine may be found in the "User" 

section of the HAPPI Technical Manual, Volume 4. Examples of the use of 

ActionMonitor() will be given in example code in later sections. 
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4.10 Writing the Parameter Fetching Routine 

This section will discuss the issues involved in writing a parameter 

fetching routine for HAPPI, and will examine example code line-by-line. All 

of HAPPI's parameter fetching routines are similar in structure; the 

programmer may usually (and is, in fact, encouraged to) simply copy and 

modify an existing routine, or the code template to be discussed below, to cut 

down on the necessary typing. 

All parameter fetching routines perform the following tasks: read the 

current default input parameters from the global parameter block, create and 

display two menu windows showing the names and current default values, 

respectively, of the parameters, enter a while loop in which ActionMonitor() 

is called to retrieve user mouse and/or keyboard input and in which the 

user's input is processed using a switch construct whose various cases each 

handle the modification of a single algorithm input parameter, remove 

windows created by the parameter fetching routine when the user is done 

modifying parameters, and exit. 

Figure 4.8 is a general code template for parameter fetching routines 

for HAPPI. A variation of this template, ready for editing, may be found in 

the file "paramtempl.c". 

1 #undef NUMPARAMS 
2 #define NUMPARAMS (an integer goes here) 
3 void routine_Param() 

4 
5 
6 
7 

char 

nt 

valuefNUMPARAMS + 1][151, 
*param_values[NUMPARAMS + 3]; 
m_width, 
m_height, 

Figure 4.8. General code template for parameter fetching routine 
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g 
9 
10 
1 1 
1 2 
1 3 
14 

m_indexl, 
m_index2, 
a_index, 
a_action, 
a_value, 
done; 

static char *param_names[] = { 
"Routine Name", 
"1st Parameter Name", 
"2nd Parameter Name", 

1 5 

1 6 

1 7 
1 8 
20 

2 1 
22 
23 
24 

25 
26 

27 

28 

29 

30 

3 1 
32 
33 
34 

"n-th Parameter Name", 
it ti | , 

Create AndDisplayMenu(param_names,(NUMP ARAMS + 1) ,5 00,5 00, 
&m_width,&m_height,&m_index 1, V); 

param_values[0] = "Parameters"; 
/* Code to initialize other elements of param_values[] */ 
param_values[NUMPARAMS + 1] = "OK"; 
param_values[NUMPARAMS + 2] = ""; 
Create AndDi splay Menu(param_v alues, (NUMP ARAMS + 2),5 00,5 00, 

&m_width,&m_height,&m_index2, V); 
done = 0; 
while(done == 0) { 

ActionMonitor(&a_index,&a_action,&a_value); 
if(((a_index == m_indexl)ll(a_index == m_index2))&& 

(a_action == 1)) 
switch(a_value) { 
case 1: 
/* Code to modify member of global parameter block */ 
/* This part is up to the programmer's requirements */ 
RemoveMenu(m_index2); 
/* Code to modify param_values goes here */ 
Create AndDisplayMenu(param_values,(NUMP ARAMS + 2) 

500,500,&m_width,&m_height,&m_index2, V); 
break; 
/* Code to handle other cases */ 
case NUMPARAMS: 
/* Code to handle case for last parameter */ 
case (NUMPARAMS + 1): 

done = 1; 
break; 

default: break; 

RemoveMenu(m_indexl); 
RemoveMenu(m_index2); 

Figure 4.8. (cont’d) 
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We now discuss the code template of Figure 4.8 line by line. Line 1 

nullifies any previous definition of the string NUMPARAMS; this allows us to 

redefine NUMPARAMS in line 2. In line 2, the programmer should define the 

string NUMPARAMS to be the (integer) number of algorithm parameters to be 

manipulated by the parameter fetching routine. Line 3 is the routine's 

function header; all of HAPPI's parameter fetching routines are declared as 

type void, and are not passed any arguments. The programmer should give 

the routine an appropriate name in line 3; all of HAPPI's parameter fetching 

routine names are postfixed with "_Param" by convention. Lines 4 through 

13 declare variables needed for every parameter fetching routine, and will 

not need to be altered by the programmer. The declaration of the array of 

string pointers p ar am _name s [ ] in line 14 must be modified for each 

parameter fetching routine. The first string, "Routine Name”, should be 

changed to the name of the image processing routine for which the 

parameter fetching routine is being written. The remaining strings should 

be descriptive but concise names for the image processing algorithm 

parameters. The last string in the declaration of param_names[ ] should be a 

null string as shown; this is necessary because of an idiosyncrasy of the 

routine HAPPI uses to create and display menu windows. The number of 

string pointers in the array param_names[] should thus be two more than the 

number of algorithm parameters due to the string pointer for the routine 

name at the beginning of the array and the null string pointer at the end of 

the array. Line 15 creates and displays a menu window near the middle of the 

computer display using the strings pointed to by the array param_names[ J; 

this line does not need to be altered by the programmer. (The programmer is 
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referred to the HAPPI Technical Manual, Volume 4, "Menu" section for 

documentation on the function call of line 15.) Line 16 begins a section of 

code which builds the elements of the array of string pointers 

param_valu.es[]. The first element of this array is assigned a pointer to the 

string "Parameters" in all of HAPPI's parameter fetching routines by 

convention. Lines 17 and 18 assign pointers to the strings "OK" and "" (a null 

string) to the second-to-last and last elements of param_values[/; this is done 

in all parameter fetching routines. Between lines 16 and 17, the programmer 

will need to insert code to initialize the remaining elements of the array 

param valuesf] using the values currently in the global parameter block; this 

code will be specific to each parameter fetching routine. Many image 

processing algorithm parameters will be floating-point or integer numbers. 

The following two lines of example code will print a float-valued parameter 

from the global parameter block into a string and assign a pointer to the 

string to one of the elements of the array param_values[J: 

sprintf(value[l ],"%f",IPparam.snratio); 
param_values[l] = value[l]; 

The first line prints the string representation of the floating-point 

parameter IPparam.snratio from the global parameter block into row 1 of the 

character array value[][]. The second line assigns a pointer to row 1 in 

value[][] to element 1 of the array of string pointers param_values[]. The 

code to handle an integer parameter would be similar; we would simply 

replace the floating-point ("%f") conversion specification in the sprintfO 

call with an integer ("%d") conversion specification. Using an incorrect 
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conversion specification in the sprintfO call is a common source of errors in 

the displayed parameter values, especially when existing code is being copied 

and modified. Some image processing algorithm input parameters may be one 

of a finite and small set of choices. For example, for an algorithm that 

processes an image by operating on individual rows or columns of the image 

(rather than on, say, small two-dimensional neighborhoods of the image), the 

programmer should give the user a choice of whether to process the image 

along the rows or the columns. In such cases, the convention adopted in 

HAPPI has been to represent such choices in the global parameter block 

using a char- or short-valued structure member. For example, the character¬ 

valued structure member fit_type in the global parameter block takes on the 

value 'c' if the image processing routines that use the fit_type parameter are 

to process along the columns of an image; if processing is to be done along 

the rows, fit type is set to the value 'r'. The example code of Figure 4.9 

illustrates how the programmer might assign values to array elements of 

param_values[] based on the value of a character-type member of the global 

if(IPparam.fit_type == 'c') 
param_values[2] = "Column"; 

else if(IPparam.fit_type == 'r') 
param_values[2] = "Row"; 

else /* Parameter fit_type has an invalid value; this should not happen */ 
(Code to handle this anomalous situation} 

Figure 4.9. Assigning value to parameter value array from small set of choices 

parameter block (code to work with short integer-type members would be 

very similar). Note that if there were more than two possible values of a non- 

numerical algorithm parameter, the above code fragment could be extended 
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in a straightforward manner to handle each possible value. This could be 

done by adding more if statements to the list in the above code fragment or by 

using a switch construct. The programmer is referred to the parameter 

fetching routines in the file IPparams.c for further examples of how the 

array of parameter value strings is built. The function call in line 20 creates 

and displays a menu window containing the (character representation of the) 

values currently in the global parameter block. This menu window is placed 

next to the first menu window created in line 15, with the parameter values in 

the second menu window next to their names in the first menu window. Line 

20 does not need to be altered by the programmer. Line 21 initializes the 

variable done\ the while statement of line 22 uses the value ot done to 

determine when to exit the while loop which begins on line 22 and ends with 

the right curly brace following line 34. Line 23 calls ActionMonitor(), which 

was discussed previously in Section 4.9; control does not return to the 

parameter fetching routine until the user enters some type of mouse or 

keyboard input. Line 24 tests the values returned (via pointers) from 

ActionMonitor() to determine if the user has clicked the mouse on cither the 

menu window containing the parameter names or the menu window 

containing the parameter values. If the user has not entered valid input (a 

mouse click on either of these windows), the code following the if statement 

of line 24 is not executed, the value of done remains unchanged, and the 

while loop again executes ActionMonitor(), waiting for the user to enter valid 

input. If the user has entered valid input, then line 25 is executed, switching 

on the the variable a_value. When the user enters valid input, a_value will 

contain the number of the sub-window of the menu window on which the 
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mouse was clicked. Thus, if the user clicks the mouse on the uppermost sub¬ 

window on the menu window displaying the current parameter values, 

a value will equal zero. As the zeroth sub-window of the parameter name and 

parameter value menu windows contain the name of the image processing 

algorithm and the word "Parameters", respectively, we do not wish to perform 

any action if the user clicks on either of these sub-windows. Hence, the list 

of case labels beginning in line 26 starts with case 1\ the code following case 1 

will be executed if the user clicks on either the name or the value of the first 

parameter. The code for each case in the switch construct will be specific to 

the algorithm parameter handled by that case. The following line of code is 

an example of how the value of a float-valued member of the global 

parameter block is altered: 

IPparam.snratio = GetFloat Value From Window(" Signal/Noise ",500,300, 
IPparam.snratio,0.0,10000.0,0.1,1.0); 

The return type of G etF loatV alueF romW indow() is float. This line of code 

places the returned floating-point value in the member snratio of the global 

parameter block IPparam. As mentioned previously in Section 4.9, the 

function GetFloatValueFromWindow() creates and displays a "value window" 

which allows the user to alter the value of an algorithm parameter using 

mouse clicks. The argument list to this function will need to be altered by the 

programmer. Argument number zero (in C, function arguments are 

numbered starting from zero) is a string which is placed in the title sub¬ 

window of the value window; often, it is useful to indicate in this string any 

constraints on the algorithm parameter being altered. For example, if the 
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algorithm parameter must be greater than zero, the programmer might pass 

the string "Signal/Noise (>0)" to GetFloatValueFromWindow() as argument 

zero. The next two arguments control the position on the computer display 

where the value window will appear; these need not be altered by the 

programmer in most cases. Argument number 3 should be the member of the 

global parameter block which is to be altered. The function 

GetFloatValueFromWindow(). uses this argument to read the current value of 

the global parameter block member at the time G etF loatValueF romW indow() 

is called. (The global parameter block member is altered only after a new 

value is returned by GetF loatValueF romW indow().) Arguments number 4 and 

5 are the lower and upper limits, respectively, on the value to be returned. 

The function GetF loatValueF romWindow() enforces these limits by lorcing 

the returned value to be the lower (upper) limit value if the user attempts to 

enter a value below (above) the lower (upper) limit value. Arguments 

number 6 and 7 are the small and large increments by which the value 

displayed in the value window is changed when the user clicks on the small 

and large arrows, respectively, in the value window. The value window 

created by the above call to GetF loatValueF romWindowi) will thus not allow 

the user to enter values below zero or above ten thousand, and will increment 

(decrement) the value displayed in the value window by 0.1 when the user 

clicks on the small up (down) arrow, and will increment (decrement) the 

value displayed in the value window by 1.0 when the user clicks on the large 

up (down) arrow. The related function G e tValue F romW indow() creates and 

displays a value window which returns an integer. Note that the arguments 

to this function for lower and upper parameter limits and small and large 
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parameter increments should naturally be integers; errors could result if 

floating-point numbers were passed. If the algorithm parameter to be altered 

is not a number, but rather a character or short integer representing one of 

a small set of choices, the code to alter the parameter may simply cycle the 

parameter through its possible values as the user repeatedly clicks the mouse 

on the parameter. Example code to cycle through the possible values for a 

global parameter block member called dummy value whose possible values are 

'a', ’b\ and 'c' might look like the following: 

if(IPparam.dummyvalue == 'a') 
IPparam.dummyvalue = 'b'; 

else if(IPparam.dummyvalue == 'b') 
IPparam.dummyvalue = ’c'; 

else if(IPparam.dummyvalue == 'c') 
IPparam.dummyvalue = 'a'; 

else /* IPparam.dummyvalue has incorrect value; this should not happen. */ 

Alternatively, we could do the same thing with a switch construct: 

switch(IPparam. dummy value) 

( 
case ’a' : IPparam.dummyvalue = 'b'; 

break; 
case 'b' : IPparam.dummyvalue = 'c'; 

break; 
case ’c’ : IPparam.dummyvalue = ’a'; 

break; 
default : /* IPparam.dummyvalue has an incorrect value */ 

/* This should not happen. */ 
break; 

} 

The programmer is again referred to the various parameter fetching routines 

in the file IPparams.c for further examples of code to modify members of the 

global parameter block. Line 27 of the code template of Figure 4.8 removes 
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the menu window containing the parameter values. The code following line 27 

will be specific to the particular parameter being modified, and will be 

identical to that used to assign the initial values to the elements of 

param_values[] in the code between lines 16 and 17. Line 28 is identical to line 

20, and simply redraws the menu window displaying the newly modified array 

param_values[]. Line 29 is an all-important break statement, which passes 

program control to the end of the switch construct; without it, program 

control simply passes to the code following the next case label, a situation we 

wish to avoid. Lines 28 and 29 do not need to be altered by the programmer. 

Following line 29, the programmer should insert as many case labels as 

necessary to handle alteration of all the of algorithm parameters. Line 30 

begins the code to handle the last parameter. All code past line 31, inclusive, is 

common to all parameter fetching routines and does not need to be altered by 

the programmer. The programmer should use the information window where 

necessary to inform the user of any special parameter constraint violations 

(besides the minimum & maximum value constraints enforced by 

GetValueFromWindow() and GetFloatValueFromWindow()). Policy for handling 

such violations is up to the programmer. Example code to force an integer 

parameter to be odd is shown in Figure 4.10. Line 1 modifies the parameter 

block according to the user's input. The user may enter any integer between 

the upper and lower limits, inclusive, passed to GetValueFromWindow(). Line 2 

tests the integer returned by G e tV a l u e F r o mW i nd o w () and placed in 

IPparam.mask_size to see if it is even. If the integer in IPparam.mask_size is 

even, lines 3 and 4 are executed, informing the user of the parameter 

constraint violation and decrementing the value of IPparam.mask_size, 
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respectively. The arguments to WritelnfoWindow() are as follows: Argument 

zero is the window index of the information window; this is a global variable, 

declared in Globals.h, and does not need to be changed by the programmer. 

Argument number 1 is the string to be written in the information window. 

1 IPparam.mask_size = GetValueFromWindow(MMask Size (odd)",500,300, 
IPparam.mask_size,3,511,1,10); 

2 if((IPparam.mask_size % 2) == 0) /* If entered mask size was even */ 
{ 

3 WriteInfoWindow(instr_window_index,MMask size must be odd; 
decrementingM,,c’,2); 

4 IPparam.mask_size -= 1; 
} 

5 RemoveMenu(m_index2); 
6 sprintf(value[l],"%d",IPparam.mask_size); 
7 param_values[l] = values[l]; 
8 CreateAndDisplayMenu(param_values,(NUMPARAMS + 2),5 00,500,&m_ width, 

&m_height,&m_index2, V); 
9 break; 

Figure 4.10. Example code for enforcing constraints on parameters 

Argument number 2 specifies whether the string is to be written right- 

justified, left-justified, or centered in the information window by the values 

Y,T, and 'c\ respectively. Argument number 3 specifies the line number 

(line 1, 2, or 3) in the information window to which the string passed as the 

argument number 1 will be written. Lines 5 through 9 make up the remainder 

of the code that would be included is a block of code to modify a member of the 

global parameter block. 

The parameter fetching routine should be placed in one of the files 

IPtest.c, IPtest2.c, or IPtest3.c along with the new image processing algorithm 
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it has been written for. With the algorithm and parameter fetching routine 

written according to the code templates presented in this document, the 

programmer need only make modifications to four of HAPPI's source code files 

and recompile the source code to integrate his/her routine into HAPPI. The 

next section details these final steps. 

4.11 Putting it All Together 

This section details the final steps necessary to integrate an image 

processing routine into HAPPI. Here, we describe changes the programmer 

will need to make to HAPPI's source code files to cause HAPPI to display an 

image processing menu selection for the new routine, prompt the user for the 

input image(s) when the new routine is selected, and execute the parameter 

fetching routine and algorithm calls via the Image Processing Manager. If 

the programmer is not only adding a new routine but creating a new class of 

routines, then the changes necessary for each file will be more extensive than 

if a new routine is being added to an existing class of routines. For each source 

code file discussed in this section, we will first discuss the changes necessary 

to add a new routine to HAPPI under an existing class, then address changes 

necessary to add a new class of routines to HAPPI . 

4.11.1 Editing Menus.h 

The first file the programmer needs to edit is Menus.h. This file 

contains the declarations and initializations for all of HAPPI's static menus, as 
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well as preprocessor macros defining attributes of the static menus. If the 

programmer is adding an algorithm under an existing class, the following 

changes should be made to this file: 

1) Update the preprocessor macro which defines the size of the menu for the 

image processing class under which the new algorithm is being added; 

2) Add a string containing the name of the new routine to the static 

declaration and initialization of the menu item text for the image 

processing class. 

The preprocessor macros defining the menu sizes for each image processing 

class are of the form: 

#define c/assnameMENUSIZE size 

where c las s name is the name of an image processing class (in all capital 

letters by convention) and size is the (integer) number of items (including the 

menu title and the "Exit" menu item) in the menu for that class. The 

programmer would thus increment size by the number of new routines being 

added to the menu for class classname. The declaration and initialization of 

menu item text for the trend removal class or processing routines is shown in 

the code listing of Figure 4.11, which is excerpted from Menus.h. Beginning 

in line 4, TRENDREMOVALMENU[] is declared and initialized as a static array of 

pointers to the strings in lines 5 through 10. To add a new image processing 

routine to the trend removal menu shown above, the programmer would thus 
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change the menu size from "5" to "6" in line 1, and would insert a string 

containing the title of the new routine into the list beginning in line 5. The 

routine which creates and displays menu windows places the string pointed to 

by the first element of TRENDREMOVALMENU[] in the first subwindow of the 

1 #define TRENDREMOVALMENUSIZE 5 
2 #define TRENDREMOVALMENUX ((Main_Menu_Width/7)+2) 
3 #define TRENDREMOV ALMENU Y (5*(Main_Menu_Height/2) + MAINMENUY) 
4 static char TRENDREMOV ALMENU [] = 

{ 

5 "Trend Removal", 
6 "Row or Column Fit", 
7 "Surface Fit", 
8 "Widowed RC Fit", 
9 "Exit", 
10 

Figure 4.11. Example of menu text item declaration 

menu window, the second string in the second subwindow, and so forth. The 

position of the new routine in the list is up to the programmer; however, the 

new routine should be positioned so as to "make sense" to the user. If the new 

routine is related to other existing routines, it should be grouped with them 

rather than being simply placed at the bottom of the list. The programmer 

should make note of where the new routine is inserted in the list, as 

subsequent modifications to other files will depend on this. 

If the programmer is creating a new image processing class, the 

changes that must be made to Menus.h are as follows: 
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3) Update the preprocessor macro which defines the menu size for the Image 

Processing menu; 

4) Add a string containing the name of the new class to the static declaration 

and initialization of the Image Processing menu, IMG_PROCESS_MENU; 

5) Declare and initialize a new menu for the new class and define menu 

attributes for the new menu. 

Steps 3 and 4 above are similar to steps 1 and 2; the programmer simply edits a 

different preprocessor control line and initialization list. Step 5 may be done 

using the menus for other classes as examples; all menu declarations are 

similar in form. The new menu should have a size, x location, and y location 

attribute defined with preprocessor control lines, and should have a 

descriptive, easily remembered name. The x and y location attributes of the 

trend removal menu are defined in lines 2 and 3, respectively, of Figure 4.11. 

These attributes are used to determine where the menu will be drawn on the 

screen, and are up to the programmer. If the new menu is to be displayed 

directly to the right of the Image Processing submenu, then the x location 

attribute should be set to that of the trend removal menu example of Figure 

4.11, namely ((Main_Menu_Width)/7 + 2). (Note: the variable 

Main_Menu_Width is a global variable declared in the file Globals.h.) By 

convention, the menus for each image processing class are drawn with their 

menu titles directly to the right of the name of the class in the Image 

Processing menu. Thus, if we let num be the (integer) position of an image 

processing class in the Image Processing menu, then the y location attribute 

should be set to (((num + 2)*(Main_Menu_Height)/2) + MAINMENUY) to 
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adhere to this convention. (Note that the top, or zeroth, position in any menu 

window is occupied by the menu's title.) The static declaration and 

initialization of the menu text items for the new class will be similar to the 

ones for the existing classes. The first, or zeroth, string in the initialization is 

always the menu title; this is followed by as many strings as necessary to 

denote the routines to be accessed via the menu, with these strings followed by 

an "Exit" string and a null string. 

4.11.2 Editing Globals.h 

The next file to edit is Globals.h. This file includes declarations of global 

variables that are used throughout HAPPI, data type definitions for the image 

buffer and the global parameter block, and the enumeration lists for the class 

and subclass variables passed to /P_manager(). If the programmer is adding 

an algorithm under an existing class, the following changes should be made to 

this file: 

1) Add any new parameters needed by the new processing routine to the data 

type definition of the global parameter block; 

2) Add an enumerator for the new routine to the enumeration list of the 

IP_SUBCLASS defined type under the applicable class of processing 

routines. 

Many algorithm parameters function similarly in HAPPI's various image 

processing routines; for example, all convolution-based routines take a 
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convolution mask size as a parameter. The practice adopted in HAPPI has been 

to share a single member of the global parameter block between processing 

routines that make similar use of that member. Hence, the mask_size member 

of IPparam is used by all of HAPPI's convolution-based processing routines. 

Before the programmer adds a new member to the global parameter block data 

type definition, he/she should first check to see if appropriate members have 

already been defined. The data type definition of the global parameter block 

begins with the line "struct param {" in Globals.h. Following this line are the 

declarations for the individual structure members. The programmer is 

referred to the calls to the individual image processing routines (located in the 

file IPmanager.c to be discussed in greater detail below) to see which members 

of IPparam are used by a particular processing routine, and which members 

are shared between processing routines. If it is deemed necessary to create a 

new member in the global parameter block, the programmer simply adds a 

declaration of the appropriate type for the new member to the structure 

declaration. 

To find the enumeration list for the IP_SUBCLASS defined data type, the 

programmer should search Globals.h for the string "IP_SUBCLASS". Integer 

values are explicitly assigned to the enumerators in this list according to the 

following scheme: Within each image processing class, the enumerators for 

the subclasses of that class are assigned values according to the menu position 

of the routine corresponding to the enumerator. The scheme is illustrated for 

the "trend removal" class of processing routines as follows: The menu for the 

trend removal class contains (at this writing) three routines: "Row or Column 

Fit", "Surface Fit", and "Windowed RC Fit", which appear in that order. The 
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enumerators declared for these routines in Globals.h are "refits", "surrje", and 

"wls2dsur", respectively (Note: The names of these enumerators were derived 

from the original names of the processing routines. It is not necessary for 

them to resemble the menu text, as they are not seen by the user.). The 

integer assignments for the enumerators in the trend removal class are thus 

rcfits=l, surrje=2, and wls2dsur=3. The enumerators for the subclasses of each 

processing class are assigned values in a like manner. Hence, the enumerator 

corresponding to the first processing routine in the menu for any given class 

is assigned a value of 1, the enumerator for the second processing routine in 

the menu for any given class is assigned a value of 2,and so forth. When the 

programmer modifies the enumerator list for the IP_SUBCLASS defined type, 

he/she should thus recall the menu position of the new routine being added 

(this position is established when the file Menus.h is edited), and modify the 

assigned values in the enumerator list as appropriate; if the menu text for the 

new routine was inserted before the end of the menu when Menus.h was 

edited, then the enumerator for the new routine should be inserted at the 

corresponding point in the enumerator list within the group of enumerators 

for the applicable processing class. The new enumerator should be assigned 

the value that was previously assigned to the enumerator it is displacing, and 

the assigned values for all subsequent enumerators within the applicable 

processing class should all be incremented to reflect that they have been 

"bumped down" one position on the menu. 

If the programmer is creating a new image processing class, the 

changes that must be made to Globals.h are as follows: 
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3) Add any necessary declarations to the global parameter block, as in step 1 

above; 

4) Declare an external integer to hold the menu index of the menu for the new 

processing class; 

5) Add an enumerator for the new processing class to the enumeration list of 

the IP_CLASS defined type. 

6) Insert a group of enumerators for the new class into the enumerator list of 

the IP_SUBCLASS defined data type, following the previously discussed 

scheme for explicitly assigning values to the enumerators. 

A global variable for each of HAPPI's static menus is declared in Globals.h with 

a declaration of the form: 

extern int menuname_Menu; 

where menuname is a descriptive name for the menu, with a capital first letter 

by convention. The programmer should thus add to Globals.h a declaration of 

the above form with menuname being descriptive of the new class of 

processing routines. This new external integer will be needed in a subsequent 

step when a new menu manager is created to handle the new processing class. 

To find the enumeration list for the IP_CLASS defined data type, the 

programmer should search Globals.h for the string "IP_CLASS". Integer 

values are explicitly assigned to the enumerators in this list according to a 

scheme similar to that for the IP_SUBCLASS defined data type: The values are 

assigned to the enumerators according to the menu position of the 
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corresponding processing class in the Image Processing menu. Thus, (at this 

writing), the enumerator noise _Jilter, which corresponds to the first 

processing class in the Image Processing menu, "Noise Filters", is assigned a 

value of 1. When the programmer modifies the enumerator list for the 

IP_CLASS defined type, he/she should thus recall the menu position of the new 

class being added (this position is established when the file Menus.h is edited), 

and modify the assigned values in the enumerator list as appropriate. 

4.11.3 Editing IPmanager.c 

The next file to edit is IPmanager.c. This file contains the functions 

IP_manager(), GetParams(), CallIP(), and the parameter fetching and image 

processing support routines which are called by GetParams() and CallIP(), 

respectively. Recall that the parameter fetching support routines call the 

actual parameter fetching routines, and the image processing support 

routines call the actual image processing routines (the reader is referred to 

Figure 4.3 in Section 4.3 for an illustration of the flow of control between these 

functions). If the programmer is adding a processing routine under an 

existing class, the following changes should be made to this file: 

1) Edit the parameter fetching support routine for the applicable processing 

class, adding to the support routine's switch construct a case label and 

accompanying code to call the parameter fetching routine for the new 

algorithm; 
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2) Edit the image processing support routine for the applicable processing 

class, adding to the support routine's switch construct a case label and 

accompanying code to call the new image processing routine. 

As may be recalled from the discussion of Section 4.3, IP_manager() is passed a 

class and subclass, which together determine the image processing routine to 

be executed. IP_manager() then call GetParams() and CallIP() in turn, passing 

the class and subclass on to both of these routines. GetParams() and CallIP() 

both "switch" on the image processing class passed to them and call a support 

routine for that particular class, passing the subclass to the support routine. 

The support routines in turn "switch" on the subclass passed to them and call 

the specific parameter fetching or image processing algorithm determined by 

the subclass. The parameter fetching support routines have names prefixed 

with "P_", and the image processing support routines have names prefixed 

with "C_", by convention. Hence the parameter fetching and image 

processing support routines for the trend removal class of image processing 

routines are called "P_Trend()" and "C_Trend()", respectively. The entire 

source code of P _Tre nd() is listed in Figure 4.12. (Note: The string 

BAD IMG _P ROC ESS _SU BC LA is defined with a preprocessor macro in the file 

"errors.h" as the error code to be returned if the subclass passed to a support 

routine is not defined in the enumerator list for the defined type 

IP_SUBCLASS). 

Thus, if he/she were adding a new processing routine under the trend 

removal class of processing routines, the programmer would simply add a case 

label and accompanying code for the new routine to the switch construct 
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beginning in line 5 of the listing of Figure 4.12. The expression following the 

word "case" in the case label should be equal to the enumerator for the 

subclass of the new routine (this is the enumerator added to the enumerator 

list for the IP_SUBCLASS defined type when the file Globals.h is edited). The 

1 int P_Trend(subclass) 
2 IP_SUBCLASS subclass; 

( 
3 int error; 
4 error = 1; 
5 switch(subclass) 

{ 
6 case refits : 
7 
8 case surrje: 
9 
1 0 case wls2dsur 
1 1 
1 2 default : 
1 3 

} 
14 return error; 

Rcfit_Param(); 
break; 
Surf_Param(); 
break; 
Wls2dsur_ Param(); 
break; 
error = BAD_IMG_PROCESS_SUBCLA; 
break; 

Figure 4.12. Source code for support routine P_Trend() 

statements following the new case label are simply a call to the parameter 

fetching routine and a break statement. If we have written our parameter 

fetching routine to return an error code, we should assign the returned value 

to the variable error (declared in line 4 of the listing in Figure 4.12). The 

error code will then be passed back to the manager routine which called 

lP_manager() and handled with a generic error display function. Thus, the 

new lines of code added to the switch construct would be of the form: 
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case newroutine : error = Newroutine_Param(); 
break; 

The modifications to the image processing support routine are similar to 

those for the parameter fetching support routine. A case label, with 

accompanying code to call the image processing routine, is added to the switch 

construct found in the image processing support routine. Each image 

processing support routine contains a single switch construct with case labels 

identical to those in the switch construct of the corresponding parameter 

fetching support routines. The new case label is thus identical to the one 

added to the switch construct in the parameter fetching support routine. The 

block of code following the case label consists (for the vast majority of 

processing routines) of the call to the processing routine, a line of code used to 

build an entry in the output image's history structure, and a break statement. 

If the processing routine returns any error codes, the returned value should 

be assigned to the variable error. (All of the support routines use this variable 

name for returned error codes by convention.) The argument list in the call 

to the processing routine consists (with the exception of the argument(s) for 

the destination image pointer(s)) of the appropriate members of the global 

parameter block IPparam. The destination image pointer(s) passed to the 

processing routine is (are) the temporary image pointer(s) temp _img (and 

temp_img2, if it is needed). The character array history, declared in each of 

the image processing support routines, is used to build a string describing the 

processing that has just been performed on an image. This string is saved in 

the history structure of the destination image upon successful completion of a 

processing routine. Example code to be added to the switch construct of the 
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image processing support routine might look that in Figure 4.13. In line 1, we 

have the case label and function call to the new routine, with the argument 

list as described above and the return value assigned to the variable error. 

1 case newroutine : error = Newroutine(IPparam.s_imagel,temp_img, 
IPparam.int_element l,IPparam.float_element 1, 
IPparam.int_element2); 

2 sprintf(history,"newroutine(image_var,image_var, 
%d,%f,%d);",IPparam.int_elementl, 
IPparam.float_elementl ,IPparam.int_element2); 

3 break; 

Figure 4.13. Example code to add to image processing support routine 

The sprintfO call in line 2 bears some further explanation. Argument number 

1 to sprintfO is the "format string". The format string begins with a 

descriptive string for the new routine (this may be identical to the new 

routine's name, but does not have to be), followed by a left parenthesis, 

followed by a comma-separated list whose members are determined by the 

argument list for the new routine as follows: For every argument to the new 

routine of type IMAGE, the element of the comma-separated list is just the 

string "image_var" (note that the "image_var" strings themselves are not 

enclosed in double quotes in the sprintfO call). For every non-image 

argument to the new routine, the corresponding element of the comma- 

separated list is a conversion specification of the appropriate type (%f for 

float-valued arguments, %d for integer arguments, and so forth). The comma- 

separated list is terminated with a right parenthesis and a semicolon. The 

remaining arguments to the sprintfO call are just the appropriate members of 
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the global parameter block, and are identical to the corresponding arguments 

in the call to the processing routine in line 1. The sprintfO call of line 2 is 

truly necessary only if the programmer is incorporating the new processing 

routine into HAPPI's built-in macro language. It will not cause problems if the 

programmer does not add the new routine to the macro language, but HAPPI's 

"convert history to macro" function is the only function that requires the use 

of the sprintfO call of line 2. The rigid form of the format string in the 

sprintfO call is necessary for HAPPI's macro functions to properly interpret 

each entry in an image's history structure when converting the history 

structure to a macro. Instructions on how to add a new routine to the macro 

language in addition to adding it to the interactive user interface are beyond 

the scope of this document. However, once a new routine has been integrated 

into HAPPI, it may be added to the macro language by editing only one file, 

”macro_calls.c". Brief instructions on what changes need to be made are found 

in comments in this file; the changes involve mostly copying and modifying 

existing code, and the skilled programmer should be able to incorporate new 

processing routines into the macro language easily. 

Occasionally, certain processing routines may require additional "set¬ 

up" or "clean-up" code beyond the three lines given in Figure 4.13. The 

programmer is referred to the support routines C_Trend() and C_Flaw() in 

IPmanager.c for examples of such situations and how they are handled. In 

particular, these routines contain examples of the creation of a second 

destination image, temp_img2, for processing routines which produce two 

output images. (Recall from Section 4.3 that temp_img is created within 



www.manaraa.com

122 

CallIP(), and temp_img2 is created within the image processing support 

routines only where needed.) 

If the programmer is creating a new image processing class, the 

changes that must be made to IPmanager.c are as follows: 

3) Create a new parameter fetching support routine for the new class; this may 

be most easily done by copying and modifying an existing parameter 

fetching support routine; 

4) Edit the function GetParams(), adding to this function's switch construct a 

case label with accompanying code to call the parameter fetching support 

routine for the new processing class; 

5) Create a new image processing support routine for the new class, again by 

copying and modifying an existing image processing support routine. 

6) Edit the function CallIP(), adding to this function's switch construct a case 

label with accompanying code to call the image processing support routine 

for the new processing class. 

As both the parameter fetching and image processing support routines are all 

very simple and similar, performing steps 3 and 5 above is very 

straightforward. In creating the support routines, the programmer should 

refer to Globals.h to assure that the case labels used in the support routines' 

switch constructs exactly match the enumerators of the enumerator list for 

the IP_SUBCLASS defined type. Both of the new support routines should 

declare and return the error variable, and the image processing support 

routine should declare the history variable and include calls to the functions 
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copy_history() and append_history() (the calls to these functions may be 

copied from existing support routines without modification). 

The functions GetParams() and CallIP() both contain a single switch 

construct, and the modifications to these files in steps 4 and 6 above are also 

very straightforward. The case label added to each function's switch construct 

must exactly match the enumerator added for the new processing class in the 

enumerator list for the IP_CLASS defined type. For GetParams(), the code 

following the new case label is just a call to the new parameter fetching 

support routine of the form: 

error = P_Newclass(subclass); 

and a break statement. Note that the subclass passed to GetParams() is passed 

on to the parameter fetching support routine. For CallIP(), the code following 

the case label is just a call to the new image processing support routine of the 

form: 

error = C_Newclass(subclass); 

and a break statement. Note that the subclass passed to CalllP() is passed on to 

the image processing support routine. 



www.manaraa.com

124 

4.11.4 Editing Managers.c 

The final file to edit is Managers.c. This file contains the Image 

Processing Menu Manager and all of its subordinate menu managers, as well as 

the menu managers for HAPPI's "Images", "Macros", "Special Functions", 

"Quit", and "Buffer" main menu items. If the programmer is adding an 

algorithm under an existing class, the following changes should be made to 

this file: 

1) Edit the function /nit_/Pparam(), inserting code to initialize any new 

members that were added to the global parameter block IPparam when 

Globals.h was edited; 

2) To the menu manager function which handles the applicable class of 

processing routines (the names of these managers are listed below), add a 

case label and accompanying code to the menu manager's switch construct 

(this is most easily done by copying and modifying code associated with the 

case label for an existing routine); 

3) Within the manager modified in step 2, find the preprocessor control line 

defining the word EXITVALUE as an integer value, and increment the 

integer in this definition by the number of processing routines being 

added. 

The function /nit IPparam() is called only once, during initialization, 

and assigns default values to every member of the global parameter block. If a 

member of the global parameter block is not explicitly assigned a value at 
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initialization, the member will contain random memory garbage, and when 

the user calls a processing routine which uses that member, that random 

garbage will be displayed in the value window created in the parameter 

fetching routine. At that point, the user may change the value of the member, 

in the usual way, to an appropriate value. However, if he/she does not change 

the value of the member, the garbage value stored in that member will be 

passed to the processing routine selected by the user. Depending on the extent 

to which the selected image processing routine checks its input parameters, 

passing garbage to a processing routine could result in unpredictable output. 

The purposes of step 1 above are thus to help prevent "incorrect " input 

parameters from being passed to processing routines, and to assure that 

"correct" and representative default values for all algorithm input parameters 

are always presented to the user for every processing algorithm. The code 

added to Init_IPparam() will be of the form: 

IPparam.mynewparameter = mydefaultvalue; 

where my newp ar ameter is the new member added to IPparam by the 

programmer, and mydefaultvalue is the value the programmer has chosen, 

based on experience with his/her processing routine, as a representative 

default value for the parameter. Note that if no new members have been added 

to IPparam, this step is not necessary. 

To perform step 2 above, the programmer needs to know the names of 

the Image Processing Menu Manager's subordinate menu managers for the 

various image processing classes; these are (at this writing): 
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Noise_Filters_Manager() 
Morphology _Manager() 
Trend_Removal_Manager() 
Edge _Detection_Manager() 
Convolution_Manager2() 
Contrast_Enhancement _Manager() 
Flaw _D etection _Manager() 
Img_Measurement Manager{) 
Math_Manager() 

Additionally, there are two subordinate menu manager "skeletons" in 

Managers.c; these functions currently do nothing but return to their calling 

routine, Img_Process_Manager(), once the user selects the "Exit" item on their 

menus. The menu manager skeletons are called N ew 1 _M anager () and 

N ew2 _M anager (), respectively. The code for N e w 1 _M a na g e r () and 

New2_Manager() is not compiled unless the preprocessor control line: 

#define EXPAND 

is included at the top of Managers.c. 

As discussed in Section 4.3, l mg _P r o c e ss _M anager () (the Image 

Processing Menu Manager) and all of its subordinate menu managers may be 

regarded as a large nested switch construct. The integer expressions that this 

switch construct "switch" on are supplied by the function ActionMonitor(), 

discussed in Section 4.9. Upon return from ActionM onitor(), the integer¬ 

valued variable value, whose address is passed to ActionMonitor(), contains the 

number of the subwindow of the menu window in which the user has clicked 

the left mouse button. (Recall that the uppermost subwindow in a menu 

window is numbered zero, not one.) Within Img_Process_Manager(), the value 
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variable used by ActionMonitor() is declared as type IP_CLASS, and the case 

labels used in the function's switch construct are just the enumerators for the 

IP_CLASS defined type. Thus, in the execution of I mg_P rocess _Manager( )'s 

switch construct, the integer returned by ActionMonitor() in value is 

compared to the enumerators in the enumerator list for the IP_CLASS defined 

type. Since the integer values explicitly assigned to these enumerators in 

Globals.h are equal to the menu positions of the corresponding image 

processing classes in the Image Processing menu, the code associated with the 

case label matching the selected image processing class is always executed. A 

similar scheme is used within l mg _P roc ess _Manager()' s subordinate menu 

managers. The value variable used by Actio nM o nitor() in these menu 

managers is declared as type IP_SUBCLASS, and the case labels for the switch 

construct in each menu manager are just the group of enumerators from the 

IP_SUBCLASS enumerator list for the particular class of routines served by 

that menu manager. 

Thus, the code modifications of step 2 above proceed as follows: To the 

switch construct of the appropriate menu manager, add a case label, with the 

expression following the word "case" in the case label equal to the enumerator 

for the new routine (this is the enumerator added to the enumerator list for 

the IP_SUBCLASS defined type when Globals.h is edited). Then, copy the code 

associated with an existing case label and place it directly after the new case 

label, and modify the copied code to suit the new routine. The code copied in 

this step, for processing routines which take only one input image, will look 

like the example code of Figure 4.14. The code of Figure 4.14 is explained line 

by line as follows: Line 1 simply highlights the menu item selected by the 
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user. The programmer need not change line 1, as the variable value, returned 

by ActionMonitor() and passed to HighLightItem(), determines which item is 

highlighted. The function get_imageJ"rom_user() called in line 2 has a 

case 
1 
2 

3 

4 
5 
6 
7 
8 

9 

mynewsubclass : 
HighLightItem(menu_index, value); 
source = get_image_from_user("Select source image for 

MyNewRoutine", "Explanatory Comments", 
menu_index,EXITV ALUE,prev_menu,exit_item); 

if (source != NULL) 
{ 

lPparam.s_imagel = source; 
subclass = mynewsubclass; 
IPerror = lP_manager(class,subclass); 
if(IPerror <= 0) 

system_error(”IP manager: Processing Class: 
My New Routine", IPerror); 

else 
add_image_to_buffer(IPparam.d_imagel); 

10 break; 

Figure 4.14. Example code associated with case label for new processing routine 

return type of IMAGE; this function writes the two strings passed to it as 

arguments number 0 and 1 to the information window to prompt the user for 

an input image. The two strings in the call to get_image_jrom_user() should 

be changed to appropriate prompts by the programmer. The remaining 

arguments to this function should be left unchanged. The variable source 

(and source2, if it is needed) is declared in each subordinate menu manager as 

an IMAGE variable. Thus, the call to get_image_from_user{) returns an image 

pointer and assigns its value to the variable source. If the user does not click 

the left mouse button on an image window, get_image_from_user() returns a 
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null pointer. Line 3 thus checks to see if the user has in fact clicked the left 

mouse button on an image window, and if he/she has done so, passes control 

on to line 4; otherwise, control is passed to line 10. In line 4, the image pointer 

in source is assigned to the image pointer s image 1 in IPparam. The 

programmer need not modify lines 3 or 4. Line 5 assigns the enumerator for 

the appropriate subclass to the variable subclass (subclass is declared as an 

IP_SUBCLASS-type variable in all of the subordinate menu manager routines); 

the programmer should edit line 5 to assign the enumerator for his/her new 

routine to subclass. Note that the value assigned to subclass is thus identical to 

the expression following the word "case" in the case label preceding line 1. 

Line 6 makes a call to the Image Processing manager, assigned the returned 

error code to the integer variable IPerror. The variable class passed to 

IP_manager() in line 6 is declared as type IP_CLASS in all of the subordinate 

menu managers, and is assigned the enumerator for the appropriate class at 

the beginning of each subordinate menu manager. Line 7 checks the 

returned error code from IP_manager()\ control passes to line 8 if an error 

occurred, and to line 9 otherwise. Line 8 calls a generic error-handling 

routine which displays the string passed as the argument number 0 to 

system_error() in an "acknowledgement window". Argument number 1 to 

system_error() is the generic error code that was returned by IP_manager()\ 

this code is used to look up an error message which is also displayed in the 

acknowledgement window. The programmer thus need only modify the string 

passed as argument number 0 to system_error() to an appropriate message. If 

no error occurs during image processing and line 9 is executed, the function 

add_image_to_buffer() is called, adding the processing routine's destination 
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image to the global image buffer and also displaying it on the screen. Line 10 

is the all-important break statement that passes control to the end of the 

switch construct. The programmer need not modify lines 9 or 10. If a 

processing routine takes two input images the code of Figure 4.14 needs to be 

modified somewhat. The modifications involve adding another call to 

get_image_from_user() and another test of the returned image pointer similar 

to the one in line 3. The programmer is referred to the code in 

Math_Manager() for examples of how to deal with two input images. 

Step 3 above is fairly straightforward. In each subordinate menu 

manager, the word EXITVALUE is first undefined, then redefined with a 

preprocessor control line as the menu position of the menu's "Exit" item. Thus, 

if a menu for a particular processing class has three processing routines, the 

routines themselves occupy menu positions 1, 2 and 3, while the menu title 

occupies menu position zero, and the "Exit" item occupies menu position 4. For 

such a menu manager we would see the preprocessor control lines: 

1 #undef EXITVALUE 
2 #define EXITVALUE 4 

at the beginning of the manager's code. If we are adding new routines to this 

menu, we are "bumping down” the "Exit" item, so we need to adjust the value of 

EXITVALUE to reflect it new menu position by replacing the '4' in line 2 above 

with the appropriate value. 

If the programmer is creating a new image processing class, the 

changes that must be made to Managers.c are as follows: 
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4) To the function / n i t _M a n a g e r (), add a call to the function 

CreateStaticMenu() to create a static menu for the new processing class; 

5) Create a new subordinate menu manager (and submanagers if necessary) 

for the new image processing class (this may be most easily done by 

copying and modifying an existing menu manager); 

6) Modify Img_Process_Manager(), adding to its switch construct a case label 

and accompanying code for the new menu manager; 

Recall that when HAPPI is started, all static data structures, including 

static menu windows, whose contents will not change the entire time the 

program is running, are initialized. These and other initialization functions 

are controlled by the function /nit_Manager(). Within /nit_Manager(), the 

programmer will find a separate call to the function CreateStaticMenu() for 

every class of image processing routines. The programmer should copy and 

modify one of these calls to create a static menu for the new processing class. 

The new call to CreateStaticMenu() should be placed after all the other calls to 

this function in lnit_Manager(). The function header of CreateStaticMenu() is 

shown in Figure 4.15. 

Creates taticMenu(menu,no,x,y,width_menu,height_menu,menu_index,direct ion) 
char **menu; /* input - menu item string */ 
char direction; /* input - direction of arrangement */ 
int no; /* input - number of menu items */ 
int x,y; /* input - position at which to draw menu */ 
int *width_menu, *height_menu; /* returned - menu dimensions */ 
int *menu_index; /* returned - menu window ID */ 

Figure 4.15. Function header of CreateStaticMenu() 
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The programmer should pass arguments to CreateStaticMenu() as 

follows: The menu argument should be the name of the array of character 

pointers for the menu item text declared and initialized in the file Menus.h. 

The no, x, and y arguments should be passed as the menu size, the menu x 

location, and menu y location, respectively, for the appropriate class defined 

with preprocessor macros in Menus.h. Thus, for the call which creates the 

static menu for the morphology class of processing routines, the menu, no, x, 

and y arguments are passed as MORPHOLOGYMENU, MORPHOLOGYMENUSIZE, 

MORPHOLOGYMENUX, and MORPHOLOGYMENU Y, respectively. Within 

/ nit _M ana ge r(), the variables width and height are declared, and their 

addresses are passed in all calls to CreateStaticMenu() as the width_menu and 

height menu arguments, respectively. Although the values returned in these 

variables are not used within I nit _Manager(), the addresses of the variables 

still need to be passed to CreateStaticMenu() so that the argument list is 

syntactically correct. The menu index argument should be passed as the 

address of the global variable (declared in Globals.h) for index of the menu for 

the new class. Thus, for the call which creates the static menu for the 

morphology class of processing routines, the menu_index argument is passed 

as &Morph_Menu, the address of the global integer variable Morph_Menu 

declared in Globals.h. This argument is used by CreateStaticMenu() to assign a 

unique integer to the menu index variable for each static menu. The direction 

argument determines whether the menu items will be drawn on top of or next 

to each other. By convention, this argument is passed as V (indicating a 
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"vertical", or vertically stacked, menu) in all the calls to CreateStaticMenu() 

for the image processing menus. 

The menu manager "skeletons" Newl_Manager() and New2_Manager() 

in Managers.c may be used as starting points for creating new subordinate 

menu managers. These functions constitute a bare minimum of code to 

implement a menu manager routine within HAPPI. An abbreviated version of 

the function Newl_Manager() is listed in Figure 4.16. 

The particular code added to the skeleton of Newl _Manager() to create a 

subordinate menu manager for a new class of processing routines will of 

course depend on the nature of the new class. In creating the menu manager 

for a new class, the programmer should think about which existing class of 

processing routines is most like the new class, and copy and modify code from 

the menu manager for that class. The code of Newl_Manager() shown in 

Figure 4.16 constitutes the bare minimum code necessary to draw a menu of 

processing routines for an image processing class, fetch and process user 

input, and call the new processing routine via IP_manager(). 

We now discuss the code of Figure 4.16 line-by-line, noting which lines 

need to be changed to create a menu manager for a new processing class. The 

programmer should change the function name in line 1 to a descriptive name 

for the new processing class. Lines 2 and 3 are the same for all menu 

managers, and do not require modification. The arguments prev_menu and 

exit item are used to pass information about the "parent" menu manager 

(Img_Process_Manager() in this case) to each subordinate menu manager; this 

information makes it possible to allow the user to exit a subordinate menu 
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1 
2 
3 

4 
5 
6 
7 
8 
9 
1 0 
1 1 
1 2 
1 3 
14 
15 
16 
1 7 

Newl_Manager(prev_menu,exit_item) 
int prev_menu; 
int exit_item; 
( 
int 
int 
IP.SUBCLASS 
int 
int 

index; 
action; 
value; 
menu_index; 
done = 0; 

int 
IMAGE 
IP.CLASS 
IP.SUBCLASS 

IPerror; 
source; 
class = newl_proc; 
subclass; 

#undef EXITVALUE 
#define EXITVALUE 4 
DisplayStaticMenu(Newl_Menu,NEWlPROCESSMENUX,NEWlPROCESSMENUY); 
menu_index - Newl_Menu; 
while(! done) 

18 
19 
20 
21 

22 

23 
24 
25 
26 
27 
28 
29 

Action Monitor(&index,&action,& value); 
if((index == prev_menu)&&(value == exit_item)) 

done = 1; 
else if((index == menu_index) && (action == 1)) 

{ 
switch(value) 

{ 
/* case 0: do nothing */ 
case newl_l: {same or similar code as in Figure 4.14) 
case newl_2: [same or similar code as in Figure 4.14) 
case newl_3: {same or similar code as in Figure 4.14) 
case EXITVALUE: ( 

HighLightItem(menu_index,EXITVALUE); 
done = 1; 
break; 

) 
3 0 UnHighLightItem(menu_index, value); 

} 
) 

31 RemoveStaticMenu(menu_index); 
} 

Figure 4.16. Abbreviated code for code skeleton Newl _Manager() 
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manager by selecting the exit item of the parent menu. Lines 4 through 10 are 

also common to all of Img_Process_Manager()'s subordinate menu managers, 

and do not require modification. The index, action, and value variables 

declared in lines 4-6 are for use by ActionMonitor(). The menu_index variable 

simply holds the index (a unique identifying number) of the menu window 

which is drawn by the subordinate menu manager. The done variable is used 

as the condition of the menu manager's controlling while loop, and is set to a 

value of 1, aborting the loop, only when the user selects the menu's "Exit" item 

or the parent menu's "Exit" item. The IP error variable is used to hold the 

returned error code from IP_manager. The source variable is an image 

pointer variable (data type IMAGE), and holds the address of an image selected 

by the user. For some managers, it is necessary to declare additional image 

pointer variables to hold the addresses of other input or output images used or 

created by processing routines. The programmer is referred to the code of 

Img_Analysis_Manager() and Math_Manager() for examples of how multiple 

input and/or output images are handled. Line 11 both declares and initializes 

the class variable; the programmer should change the initialization value in 

this line to be the enumerator for the new processing class. Line 12 simply 

declares the subclass variable which, along with the class variable is passed to 

IPmanager; the programmer need not change line 12. In lines 13 and 14, the 

word EXITVALUE is undefined and then redefined to a value equal to the menu 

position of the "Exit" item for the menu drawn by this menu manager. The 

programmer should change line 14 to define EXITVALUE to the appropriate 

value. Line 15 displays the static menu for the new processing class. The 

programmer should modify the argument list of the call to 
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DisplayStaticMenu() in line 15 as follows: Argument number 0 should be the 

menu index of the static menu for the new processing class. (Recall that the 

menu indices for the static menus are global variables declared in Globals.h 

and assigned values at initialization by the function CreateStaticMenu().) 

Arguments number 1 and 2 should be the x and y pixel locations, respectively, 

where the menu for the new processing class will be drawn on the screen. 

These locations are defined with preprocessor control lines in Menus.h. Line 

16 assigns the value of the menu index of the static menu for the new 

processing class to the variable menu_index\ this variable is used in several 

lines of code in the remainder of the menu manager, hence by assigning the 

appropriate value to me nu_index in line 16, we avoid having to change the 

many lines of code in which it appears. The programmer should change line 

16 to assign the appropriate menu index to the menu_index variable; this will 

be identical to the menu index passed as argument number 0 to 

DisplayStaticMenu() in line 15. Lines 17 through 22 set up the controlling loop 

construct of the menu manager, fetch mouse input via ActionMonitor(), and 

test the returned input. These lines do not require modification. Lines 23 

through 25 are the case labels corresponding the various routines in the new 

processing class. (Note that although consecutive case labels have consecutive 

line numbers in this abbreviated code example, the code following each case 

label in the actual menu manager occupy several lines.) The programmer 

should replace the words "newl_l", "newl_2", and "newl_3" in the case labels 

with the appropriate enumerators for the individual processing routines in 

the new processing class. Although there are three case labels in this code 

example, the programmer should add or delete case labels as appropriate to the 
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number of processing routines in the new class. The remainder of the code, 

from lines 26 through 31, is common to all menu managers and does not 

require any modification. The code following each of the case labels in the 

new menu manager is, as noted in Figure 4.16, the same as, or similar to, the 

example code of the previous Figure 4.14. The programmer will need to make 

the same kinds of modifications to this code as were discussed in connection 

with Figure 4.14. The programmer is encouraged to examine all of 

Img_Process_Manager()'s subordinate menu managers to see how they serve 

routines with different input & output requirements. 

The function I m g _P r o c e s s _M ana g e r () contains a single switch 

construct, with case labels for each of its subordinate menu manager. The 

programmer should add a new case label to this construct for the menu 

manager serving the new processing class, with the word following "case" 

equal to the enumerator for the new processing class. The programmer should 

then copy the code following one of the other case labels and modify it to call 

the menu manager for the new processing class. The code following the case 

labels of I mg _P roc ess _Manager( )'s switch construct is of the form shown in 

Figure 4.17, where MenuManagerName() is the name of the appropriate 

subordinate menu manager. The programmer needs to modify only line 3 of 

the above code fragment to call the menu manager for the new class after 

copying the four lines of code from an existing case label. The programmer 

should also modify the preprocessor control line within 

Img_Process_Manager() that defines the word EXITVALUE; the value defined 
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for EXITVALUE should be incremented by the number of new processing 

classes being added to the image processing menu, so that it properly reflects 

the menu position of the "Exit" item on that menu. 

1 HighLightItem(menu_index,value); 
2 ClearInfoLine(instr_window_index,0); 
3 A/enuA/anager/Vame(menu_index,EXITVALUE); 
4 break; 

Figure 4.17. Example code for case labels in Img_Process_Manager() 

The above completes the code modifications necessary to integrate a 

new processing algorithm or group of algorithms into HAPPI. The next step is 

to compile, and debug, if necessary, the modified code. Compilation of HAPPI is 

usually accomplished using the UNIX make utility. The details of make are 

beyond the scope of this document; we give here only a brief description of its 

operation. In a large program such as HAPPI, the source code is distributed 

over many files, and changes in one file may necessitate the recompilation of 

several other files. These file dependencies are explicitly declared in what is 

called a "make file" (the name of HAPPI's make file is "makefile"). The make 

utility reads the make file, checks the file dependencies, checks the date and 

time of last modification of all appropriate files, then selectively recompiles all 

files which have been modified since the last compilation and all of their 

dependent files. Thus, to recompile HAPPI, the programmer need only type 

"make" at the UNIX prompt while in the directory containing HAPPI's source 
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code and make file; make does the rest of the work. The programmer is 

referred to the Stellix Programmer's Guide or [UNIX references] for further 

information on make. 

Once the programmer gets HAPPI to compile without error, he/she 

should test it thoroughly. The parameter fetching routine should be 

thoroughly exercised by checking to see that the default values for all input 

parameters are correct, and attempting to change all of the input parameters. 

The processing routine itself should be tested by using an input image for 

which the output may be easily predicted. For example, in testing HAPPI's two- 

dimensional FFT routine, a 2-dimensional rectangular pulse was used as the 

input image, with the resulting two-dimensional sine function indicating the 

correct operation of the routine. Once the programmer is confident the new 

parameter fetching and image processing routines are working correctly, the 

parameter fetching routine should be moved to the file IPparams.c and the 

processing routine should be moved to the file IProutines.c, and HAPPI should 

be once again recompiled. Since IPparams.c and IProutines.c typically do not 

need to be recompiled often, this step helps keep the frequently recompiled 

files IPtest.c, IPtest2.c, and IPtest3.c relatively small, so that compile time is 

minimized. 

The programmer is encouraged to the use the symbolic code debugger 

dbx in the event that his/her code does not run properly. Details of dbx are 

beyond the scope of this document; however a summary of some basic dbx 

commands is given here. The debugger is invoked by typing "dbx filename" at 

the UNIX prompt where filename is the name of the command used to invoke 

HAPPI; this command is "happi" on many systems where the program is 



www.manaraa.com

140 

installed, but the version of the program maintained in the directory 

/home/catd/src on the Image Processing Lab's Stellar GS1025 computer is 

currently called "snappy". For dbx to do symbolic debugging, the source code 

of the program being debugging needs to have been compiled with the "-g" 

compiler option; this is taken care of by HAPPI's make file. Two useful dbx 

commands are where and print. The where command gives the dbx user a 

stack trace; this shows where in the hierarchy of function calls the error 

which caused the program to crash occurred. The print command simply 

prints the value of a variable at the time the program crashed. On-line help 

may be accessed from within dbx by typing "help" at the dbx prompt. 

4.12 Common Programming Errors 

In this section, we briefly describe some of the more common 

programming errors observed when new code has been added to HAPPI. While 

our coverage of programming errors cannot be exhaustive, it is hoped that 

this section will help the programmer avoid some of the errors committed by 

the original programmers of HAPPI. 

A common cause of fatal errors (those that result in the program 

crashing) in HAPPI is attempting to access an array element that does not 

exist. HAPPI uses many dynamically allocated arrays, and the programmer 

may occasionally lose track of which arrays are currently defined and/or the 

current dimensions of those arrays. Messages such as "Segmentation fault" 

and "Bus error" issued by the operating system at abnormal termination of 

HAPPI frequently indicate such an error. The code causing the problem can 
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often be found using dbx. Another, related error which may result in the 

program crashing and the same error messages as above being issued is the 

failure to check for null pointers returned by memory allocation functions. 

The matrix allocation routines discussed in Section 4.6 return pointers to the 

amount of memory requested by the programmer only when it is possible for 

the system to allocate that memory. If the system cannot allocate the amount 

of memory requested, the routines return a null pointer, and it is up to the 

programmer to check for this. 

The programmer is also responsible for freeing dynamically allocated 

memory once it is no longer being used. Failure to do so can result in a 

condition known as memory fragmentation, wherein new memory allocation 

requests cannot be satisfied due to the needed memory being tied up by data 

structures that have not been deallocated after they are no longer in use. The 

programmer should make a habit of typing in the appropriate memory 

deallocation routines at the end of his/her routine immediately after using an 

allocation routine. 

If the default values of a processing routine's input parameters are not 

written correctly in the menu window created by the parameter fetching 

routine, the programmer should check the calls to sprintfO in the parameter 

fetching routine. This type of error is often caused by an incorrect 

conversion specification being used in the sprintfO call. 

One potentially elusive source of error is the accidental use of function 

or variable names that are either already defined elsewhere in the code or are 

defined by UNIX. Becoming familiar with the file Globals.h will help the 

programmer to avoid some of these problems. If it is suspected that a variable 
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or function name is already defined, the programmer should search HAPPI's 

source code for the name using the UNIX grep command. If it is suspected that 

a function name is identical to a system call name defined by UNIX, the 

programmer should check to see if there is a UNIX manual page for the name 

using the UNIX man command. 

Another elusive error is the accidental placement of a semicolon 

directly after the closing parenthesis of the conditional expression of a for, 

while or do loop. In C, executable statements are terminated with semicolons, 

so the programmer is used to placing a semicolon at the end of almost every 

line of code. If a semicolon is placed directly after the expression of a loop 

construct, however, the compiler will interpret this as a null, or "do nothing" 

statement, to be executed as many times as indicated by the loop construct’s 

conditional expression, and it will appear as if the loop is not being executed at 

all. As image processing routines characteristically make extensive use of 

looping, this error occurs more often than might be expected. 

4.13 Adding New Convolution Kernels to HAPPI 

New convolution kernels may be added to HAPPI without writing a 

single line of source code. Under the "Convolution" menu item on HAPPI's 

Image Processing menu are (at this writing) two submenu items, "Template 

List", and "User-defined". The sub-submenu under the "Template List" item is 

built when HAPPI is invoked by the reading the data file "templates.happi" in 

HAPPI's source code directory. This file contains an arbitrary number of 

convolution kernel specifications of the form shown in Figure 4.18. Note that 
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this file is not a C source code file, and the lines of the file are not terminated 

with semicolons. All italicized fields in the above figure are to be defined by 

the user editing the templates.happi file. The mynewkernel field should be set 

title = mynewkernel 
size = sizeofnewkernel 
row _1 _data 
row 2 data 

row _n_data 
hot_row = row 
hot_col = col 
denom = denominator 

Figure 4.18. Convolution kernel format for kernels read from templates.happi 
file 

to the text the programmer wants to appear in the Template List menu. The 

sizeofnewkernel field should be set to the (integer) length of one side of the 

new kernel. Note that only square convolution kernels may be defined in this 

file. The row_l _data through row_n_data fields should be set to the 

convolution kernel weights for each row of the kernel, respectively. The 

individual weights must be separated by spaces on each line, and only integer 

data are allowed in these fields. The row and col fields should be set to the row 

and column, respectively, of the convolution kernel to which the convolution 

sum will be accumulated. Usually, these are set to the center row and column. 

The denominator field is set to a floating-point number by which the 

convolution sum will be divided before its value is written to the destination 

image of the convolution routine. Typically, the value used is equal to the sum 
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of the convolution kernel weights. As an example, the kernel for a 3x3 

uniform-weight lowpass filter is shown in Figure 4.19. 

title = low_pass_l 
size = 3 
1 1 1 
1 1 1 
1 1 1 
hot_row = 1 
hot_col = 1 
denom = 9.0 

Figure 4.19. Convolution kernel for 3x3 lowpass filter 
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CHAPTER 5: DIGITAL X-RAY IMAGE FORMATION 

5.1 Introduction 

In this chapter, we provide as background the basic relations of X-ray 

image formation and discuss in general terms the formation of digital X-ray 

images as they are presented to HAPPI for processing. The remainder of this 

thesis will explore how several of HAPPI’s image processing routines affect 

the size of idealized image features. 

5.2 X-ray Radiography 

Much of the discussion in this section paraphrases parts of the chapter 

on radiological methods in the text by Halmshaw (1987). The reader is referred 

to this text and its references for further details. X-rays are a form of 

electromagnetic radiation, of the same physical nature as visible light, with 

wavelengths of about 10 nm to 10"4nm. The wavelength of X-rays allows them 

to penetrate all materials with partial absorption during transmission. X-rays 

travel in straight lines outward from a source, and for all practical purposes 

cannot be focused. Thus, in a typical radiography setup, a conical beam of X- 

rays emanates from the X-ray source. A radiograph is produced by placing an 

X-ray source and a piece of photographic film on opposite sides of the 

specimen to be examined, and exposing the film to the radiation transmitted 

through the specimen for a long enough period of time to sensitize the silver 

halide crystals in the film. The necessary exposure time will depend on the 
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intensity of the X-ray source, the sensitivity of the film, and the X-ray 

absorption properties of the specimen. The basic law of X-ray absorption is: 

Ix = locxp(-px) (5.1) 

where x is the thickness of the material, IQ is the incident intensity of 

radiation, Ix is the transmitted intensity, and /i is a constant, known as the 

linear absorption coefficient, whose value depends on the material and the X- 

ray wavelength. Some proportion of incident X-rays will be re-emitted within 

the specimen as scattered radiation, and can, under some conditions, travel in 

a different direction to the primary beam. Equation 5.1 is strictly only valid 

for monoenergetic radiation and narrow-beam conditions under which the 

amount of scattered radiation reaching the detector is negligible, but is often 

applied in other than these conditions to determine an “effective” value of p 

for practical applications. 

The response of radiographic film to incident radiation is measured in 

terms of optical density D, which is defined as: 

D = logio VoHt) (5-2) 

where IQ is the intensity of light incident on one side of the film and It is the 

intensity of light transmitted through the film. Optical density of film is 

typically plotted as a function of the logarithm of the exposure E, which is 
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defined as the product of the incident X-ray intensity / and the exposure time t: 

E-lt (5.3) 

The typical “D vs. logio£” characteristic curve of a given photographic film 

will look like Figure 5.1. 

Figure 5.1. Typical density vs. log(exposure) curve 
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It may be seen that there is a portion of the film’s characteristic curve for 

which density D is approximately linear in logio£. Strictly speaking, the slope 

of the curve is slightly greater at higher exposures. However, the resulting 

higher optical densities require much higher-powered light sources for 

proper viewing. There is thus a tradeoff between achievable contrast (which 

translates to specimen thickness sensitivity) and viewability (Halmshaw 1973). 

Workers in the X-ray Image Processing Group at ISU have found that for 

purposes of digital analysis, higher optical densities, with their larger 

dynamic range, are more desirable than lower optical densities. The video 

cameras and scanners typically used in digitizing radiographs usually have 

adjustable sensitivity that allows them to compensate for low light levels. 

When a radiograph is produced using exposures which keep the film density 

in the linear region of the characteristic curve (as is common practice), there 

will be a relatively simple and direct relationship between film density and 

material thickness. Provided that the assumptions behind Equation 5.1 hold, 

material thickness could theoretically be calculated using density 

measurements from the radiograph, film characteristic curve data, and 

Equation 5.1. However, in practice, it is suggested that such calculations be 

bypassed in favor of an empirical density-thickness calibration using a 

radiographic tool known as a step wedge (Halmshaw, 1979). A step wedge is 

simply a block of the same material as that being inspected (so as to have the 

same absorption coefficient ji), which has several graduated “steps” of 

increasing thickness machined into it. The wedge is placed by, and 

radiographed with, the specimen so that film density measurements from the 

specimen may be directly compared to density measurements for a known 
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material thickness. Such an empirical calibration automatically accounts for 

departures from the film’s ideal characteristic curve and for errors due to 

Equation 5.1 not being exact. In this thesis we will assume that suitable 

calibrations can be done which will, for purposes of doing image processing, 

transform film density data into material thickness data. 

On a radiograph, the scattering of X-rays within the specimen is 

manifest in the blurring of sharp edges, termed unsharpness, and in the 

reduction of contrast. If we consider a one-dimensional slice of an X-ray 

image (i.e., a film density function of a single spatial variable), the effect of 

scattering may be modeled using a line spread function, or LSF, which is the 

integration over one dimension of the two-dimensional point spread function, 

or PSF. This line spread function is convolved with the 1-d slice representing 

the ideal film density response in the absence of scattering to arrive at a slice 

which accounts for scattering. The scattering unsharpness line spread 

function has been found to be (Fishman, et al., 1981, Notea, 1983): 

LSFs(x) = (a/2)exp(-alxl) (5.4) 

where the variable x represents distance along the 1-d slice, and a is a 

characteristic parameter whose value is determined by the radiographic 

system and the material being examined. The parameter a has units of inverse 

distance. 

Another source of blurring in the radiograph is the finite spatial extent 

of the X-ray source. X-rays are emitted from every point of the source, and 

hence, any single point in the specimen is imaged on the film by X-rays from 
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the many spatially distinct points of the source. Blur due to the finite spatial 

extent of the X-ray source is termed geometric unsharpness, and may be 

modeled using a LSF of the form (Notea, 1983): 

LSFg(x) = {\IUg)[u(x + Ug/2) - u(x - Ug/2)} (5.5) 

where Ug is the geometric unsharpness parameter, which has units of length, 

and u(x) is a unit step function. Thus, LSFg(jc) has a rectangular distribution; it 

assigns equal weight to all values of the ideal film density for x in the range 

[-(/g/2, (/g/2]. 

5.3 Typical Apparatus for Digital Processing of X-ray Images 

The apparatus used by the X-ray Image Processing Group in the 

Electrical and Computer Engineering Department at Iowa State University for 

processing NDE X-ray images is shown schematically in Figure 5.2. This setup 

is typical of those used for a variety of industrial applications. The radiograph 

is illuminated from below by the lightbox, and the transmitted light is 

converted to an analog electronic signal by the video camera. The video signal 

from the camera is then digitized by the frame grabber and moved to the 

memory and/or hard disk of the computer in which the frame grabber is 

installed. The resulting digital image is then transmitted across an Ethernet 

network, and processed and displayed on a powerful central host computer. 

Each of the components in the path from the original specimen to the 

digital representation of the radiograph within the host computer is a source 
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of noise. The quantum nature of electromagnetic radiation results in photon 

counting noise from the X-ray source. Porosity, graininess, or other texture of 

the specimen may show up in the radiograph. If this texture is considered 

normal (i.e., not indicative of a flaw), but makes it more difficult to accurately 

detect and measure true flaws in the specimen, it may be considered to be 

noise. The radiographic film will introduce film grain noise, due to the finite 
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size of the silver halide crystals in the film emulsion. The lightbox used to 

illuminate the radiograph will have some flicker and field non-uniformity. 

The image sensing element and electronics in the video camera will produce 

noise. The frame grabber electronics will also produce noise, and as with all 

digitized signals, the image that is finally processed by the host computer will 

contain quantization noise. 

The Central Limit Theorem of statistics states that the probability 

distribution of the sum of independent random variables, in the limit as the 

number of random variables in the sum goes to infinity, is gaussian, 

regardless of the distributions of the individual random variables in the sum. 

This theorem is behind the assumption of gaussian noise made in many 

analyses in the study of random phenomena. Rather than attempting to model 

all of the independent noise sources in the lab setup of Figure 5.2, we will 

instead in this thesis appeal to the Central Limit Theorem. For purposes of 

investigating how HAPPI’s various processing routines affect the size of image 

features, we will use idealized image features bathed in additive white gaussian 

noise. 

To inquire into the plausibility of using gaussian noise in our test 

images, we extracted portions of a digitized image of a real radiograph of a flat 

metal plate. The extracted image regions were selected so as to have - as well as 

could be determined by eye - stationary mean and variance. Histograms of 

these image regions were computed, and are shown in Figure 5.3. With a little 

imagination, the reader may see that the histograms of Figure 5.3 appear to 

have an approximately gaussian shape. While the gaussian noise in our test 

images may not always accurately model the complex real-world noise 
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processes present in a digitized radiograph, the measurements made on the test 

images and presented herein are, at the least, a reference point for more 

detailed future work. 
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Figure 5.3. Histograms of two separate regions of an image with locally 
stationary mean and variance: (a) Histogram of first region; (b) 
Histogram of second region; (c) and (d) Three-point smoothed 
versions of (a) and (b), respectively 
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CHAPTER 6: FEATURE SIZE MEASUREMENT 

6.1 Introduction 

In this chapter, we discuss the issues involved in determining the size 

of an image feature in a digitized X-ray radiograph. The methods used in this 

study, and the rationale behind them, are presented. The study in this thesis is 

concerned with presenting data on the influence of several of HAPPI’s image 

processing routines on image feature size. Thus, the size measurement 

methods used are intended to be reasonable, and not necessarily optimal. It is 

hoped that, in the interest of quantitative NDE, future studies might explain 

the observations presented here with a theoretical formulation. 

6.2 Feature Size Measurement and Edge Detection 

A radiograph is, ideally (i.e., not accounting for noise and 

unsharpness), a two-dimensional projection of the three-dimensional 

distribution of the X-ray absorption coefficient in a specimen. As the X-rays 

travel in a straight path from the source through the specimen to the film, 

they are attenuated by an amount that depends on the absorption coefficient 

of the specimen material and the distance traveled through the material, as 

per Equation 5.1. We may speak of the through-thickness of a specimen (or of 

a flaw within the specimen) along a particular X-ray’s path as the distance 

between the X-ray’s entry and exit points on the specimen (or flaw). In many 

NDE situations, one is concerned with locating and determining the size of 
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voids or cracks in a material. Such types of flaws are usually filled with a gas, 

often air, and have an absorption coefficient orders of magnitude lower than 

that of the specimen material. Thus, an X-ray passing through such a flaw in a 

specimen of a given through-thickness will be attenuated less than one 

passing through the same specimen with no such flaw present, with the 

difference in attenuation depending upon the through-thickness of the flaw 

and Equation 5.1. 

The types of measurements we will be concerned with in this thesis will 

be those of dimensions in the “film plane”, that is, distances between points on 

a radiograph. These distances represent projections of dimensions of actual 

physical dimensions in a specimen. To keep the study basic, the image 

features studied are idealized models of a square flat-bottom hole in a flat plate, 

radiographed with a parallel-beam X-ray source directed perpendicular to the 

bottom of the hole. In terms of an idealized image (in which noise and 

unsharpness are not modeled), this translates to a uniform image background 

of one single grey level (modeling the flat plate), with a square foreground of 

a lower uniform grey level (modeling the hole). The actual images used had a 

foreground of higher intensity than the background, however, this does not 

introduce any inconsistency, as the edge location measurements taken would 

be the same had the foreground had the lower intensity. The square 

foreground region was placed at the exact center of all test images. The test 

image dimensions were 511x511 pixels, and the square image feature 

dimensions were 101x101 pixels. Figure 6.1 is an example of one of the test 

images used (note that any streaking in this particular image is due to the 

printer used and is not present in the actual image): 
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Figure 6.1. Image modeling ideal square flat-bottom hole 
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Determination of image feature size implies determination of the 

feature’s edge locations. The size of the feature in a particular direction in the 

film plane is then just the distance between edge locations along that 

direction. Thus, our problem is one of edge detection and registration. In the 

absence of noise, the edges of a feature may be located precisely with respect 

to an edge definition. This definition may be given as, for example, the locus 

of points of a particular intensity somewhere between the peak intensity of 

the feature and the background intensity. Fishman et al. (1981) use such an 

edge definition to determine edge locations for a few ideal flaw geometries 

when scattering unsharpness is modeled using Equation 5.4. Their methods do 

not address edge location in the presence of noise, and depend upon knowing 

radiographic system parameters (namely the constant a in Equation 5.4). 

In the presence of noise, edge locations must be estimated using as 

much of the relevant available data, which implies smoothing of the data in 

the neighborhood of the edge. Smoothing implies a tradeoff between detection 

and localization (i.e., accurate registration of location) of edges, as has been 

noted by Canny (1986) and Bergholm (1987). Canny illustrates that there is a 

natural sort of “uncertainty principle” in the edge detection problem. 

Maximizing accurate edge detection (i.e., having a high detection rate of true 

edges while having a low false-alarm rate) in the presence of noise amounts to 

maximizing the signal-to-noise ratio (SNR) in the vicinity of the edge, which 

is done by some sort of smoothing. However, too much smoothing can smear, 

or displace, an edge, resulting in inaccuracies in size measurements. 

In analyses of one-dimensional step edge profiles bathed in additive 

white gaussian noise, Canny, Bergholm, and others have found that when the 
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definition of edge location is taken as the maximum of the gradient magnitude 

of the edge profile, the gaussian function is the most reasonable smoothing 

function for estimating edge locations. Here, “most reasonable” is meant in 

the sense of simultaneously maximizing SNR and edge localization while 

suppressing spurious response and being computationally efficient. In his 

analysis of one-dimensional edge profiles, Canny assumes that two- 

dimensional edges have locally constant cross-section; this assumption is true 

of smooth edge contours and of ridges, but not of corners. By “locally constant 

cross-section”, it is meant that in a neighborhood about the edge, image 

intensity is constant along lines perpendicular to the edge direction. Figure 

6.2 illustrates a region of an edge with a locally constant cross-section; 

Intensity 

Figure 6.2. Edge with locally constant cross-section 
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The idea of smoothing or averaging an image in the direction 

perpendicular to the edge direction is important to convolution-based edge 

detectors and to the measurements presented in this thesis. When the 

underlying edge signal in a noisy image has locally constant cross-section, 

and the image noise process is stationary, we may diminish the noise variance 

(thereby improving the SNR and thus improving edge detection) without 

smearing the edge by forming an average of the image pixels along the 

direction perpendicular to the edge direction. The attainable improvement in 

edge detection and localization performance will depend upon the noise 

amplitude and the length of the locally constant cross-section: the longer the 

locally constant cross-section, the more we can expect to reduce the noise 

variance, and thus to increase edge detection performance. 

Canny’s edge detection operators are designed such that they smooth an 

image in the direction perpendicular to the edge direction. These operators 

are a set of convolution masks which have a nearly rectangular profile in one 

direction, and which in the perpendicular direction have a profile that is the 

derivative of the gaussian function. Note that convolving with the derivative 

of the gaussian is equivalent to convolving with a gaussian and then taking 

the derivative, due to the following property of the convolution integral (see 

Haykin, 1983, p. 39 for a proof): 

If f(x) = g(x)*h(x), then 

df(x)/dx = (dg(x)/dx)*h(x) = g(x)* (dh(x)/dx) (6.1) 
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where * denotes convolution and df(x)/dx is the derivative of f(x). Thus, 

Canny’s edge detection operators effectively take the derivative of the 

gaussian-smoothed image in one direction while simultaneously forming an 

essentially unweighted average in the perpendicular direction. Figure 6.3 

depicts orthogonal profiles and a grey scale display of Canny’s edge detection 

operators. 

Figure 6.3. Canny’s edge detection operators (a) Profile perpendicular to edge 
direction; (b) Profile parallel to edge direction; (c) grey scale 
display of several masks 
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We note here that traditional edge detection operators, such as the Sobel 

masks, also do some averaging (albeit somewhat weighted) perpendicular to 

the edge direction. The Sobel mask for vertical edges is as shown in Figure 6.4. 

When this mask is convolved with a vertical edge, the contribution to the 

convolution sum from the mask weights of 1, 2, and 1 in the bottom three 

pixels of the mask constitutes a weighted average of image pixels in the 

horizontal direction. Similarly, the contribution from the mask weights in the 

upper three mask pixels is also a weighted average of image pixels in the 

horizontal direction. For a perfectly vertical edge, this averaging has the 

effect of smoothing noise without smearing the edge. 

-1 - 2 - 1 

0 0 0 

1 2 1 

Figure 6.4. Sobel mask for vertical edges 



www.manaraa.com

162 

6.3 Measurement Methods 

In this study, we have chosen to measure edge locations in a one¬ 

dimensional sense. For our test images (which are noisy versions of the 

square flat-bottom hole of Figure 6.1), the direction of the left and right edges 

is perfectly horizontal, so we have measured edge locations in each 

(horizontal) image row independently, using only a single row of data for 

each measurement. The edge location and feature size measured from a single 

row may thus be regarded as random variables with a different realization for 

each image row. From our set of row-by-row measurements, we calculate a 

mean and variance of edge location and image feature size. In what follows, 

mean and variance of edge location are denoted by |ie and a2
e, respectively, 

while mean and variance of feature size are denoted by |if and o 2 f, 

respectively. Standard deviation of edge location and feature size are thus 

denoted by ae and Of, respectively. 

For a test image composed of the flat-bottom hole of Figure 6.1 bathed in 

a stationary noise field, each image row will have the same SNR. Thus, the 

statistics for edge location and feature size calculated from our row-by-row 

measurements will give some sense of how precisely we can locate an edge 

with a given SNR using a single one-dimensional slice through the edge in the 

edge direction. This information in turn gives us a sense of the achievable 

increase - through averaging perpendicular to the edge direction - in edge 

location performance for a given image feature having locally constant cross- 

section. To visualize the above ideas, consider the image of a crack-like flaw 



www.manaraa.com

163 

illustrated in Figure 6.5 and the task of estimating the crack width in the 

presence of noise. If we take a single 1-d slice across (i.e., normal to the 

direction of crack propagation) the crack in the region of constant cross- 

section and use it to estimate the crack edge locations and crack width by some 

edge detection scheme, our estimates will be realizations of random variables 

with certain means and variances (namely pe and a2
e for edge location and pf 

and for feature size). Since the crack has locally constant cross-section 

along some part of its length, we can reduce image noise variance by 

averaging in the direction perpendicular to the crack edges (i.e., along the 

length of the crack) over the region of constant cross-section. If we then use 

Figure 6.5. Crack-like image feature with region of constant dimension 
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the same 1-d edge detection scheme on such an “averaged slice,” our edge 

location and feature size estimates will again be realizations of random 

variables, but with improved mean and variance. (An “improved mean” is one 

which is closer to the actual value being estimated, and an “improved 

variance” is simply a smaller variance.) 

For this study, two methods of locating edges in one-dimensional slices 

of a noisy image were tried. Both methods used as a first step the smoothing of 

the image slice by a (one-dimensional) gaussian function. The first method 

then searched each smoothed slice for the location of pixels with grey level 

halfway between the grey level of the image feature and that of the image 

background; the second method searched each smoothed slice for the location 

of the gradient maximum. We will henceforth refer to the first method as the 

“half power point method” and the second method as the “gradient maximum” 

method. Implementation details of the two methods are discussed later in the 

chapter. 

The gaussian blur function used in both methods of edge location has 

one adjustable parameter, namely the standard deviation, a, of the gaussian. 

We will refer to this a as the “blur parameter”, and denote it as ab- This 

parameter controls the tradeoff between detection and localization, and its 

optimal value for a given image will depend on the image’s SNR. It was thus 

necessary to determine what value of Cb to use for an image of a given SNR. As 

mentioned at the beginning of the chapter, we were not primarily concerned 

with finding absolute optimal measurement methods; rather, we only required 

that our measurements be reasonable and consistent. Thus, a detailed analysis 



www.manaraa.com

165 

to find precise values of the optimal blur parameter for a given SNR was not 

conducted. Rather, reasonable values of blur parameter as a function of SNR 

were experimentally determined. Our investigation of the influence of 

HAPPI’s processing routines on image feature size then was conducted by 

using the same value of blur parameter for measuring edge location and 

feature size in the pre-processed and post-processed images. In this way, we 

were applying the same edge location operator to a given pair of pre- 

processed and post-processed images in order to quantify the effects of the 

processing routines themselves. The scheme for measuring the effects of 

processing on feature size is illustrated in Figure 6.6. 

and feature size and feature size 
estimate for estimate for 
pre-processed post-processed 
image image 

Figure 6.6. Scheme for measuring effects of processing on feature size 
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6.3.1 The Program mrowblur 

A program, mrowblur (for “multiple-sigma row blur”), was written to 

determine a reasonable value of blur parameter at a given SNR. Inputs to the 

program were as follows: a (noisy) test image; a starting and ending row in the 

image; an initial, increment, and final value for the blurring parameter at>; 

the blur function length in terms of ab (i.e., number of sigmas); a flag 

selecting either the gradient maximum method or the half power method of 

edge detection; and, if the half power method was selected, the image grey 

levels of the foreground (feature) and background. The program’s operation 

was as follows: The range of test image rows specified by the inputs was 

blurred with a 1-d gaussian having the user-specified initial value of ab, and 

edge locations in each gaussian-blurred row were determined by the user- 

specified method. The amplitude of the 1-d gaussian was adjusted for each 

value of Ob so that the total area under the gaussian was identically equal to 

one. 

To find edge locations using the gradient method, the program computed 

the central difference of each gaussian-blurred row. The central difference 

y[n] of a 1-d sequence x[n] is defined as: 

y[n] = x[n+l] - x[n-l] (6.2) 

For a data set x[n] defined on the interval n=0 to n=N, y[0] and y[N] cannot be 

calculated from the above equation, and must be otherwise defined or left 

undefined. In our case, the edges of image features were nowhere near the 
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border of the image, and so the first and last elements of the central difference 

formed from each gaussian-blurred image row were left undefined. The 

central difference of each gaussian-blurred image row was then searched for 

two maxima, and these maxima were declared as the edge locations for that 

row. In searching for the two maxima, advantage was taken of the a priori 

knowledge that the image feature was brighter than the background and 

centered in the image. To help the reader visualize the following discussion, 

Figure 6.7 shows an unblurred image row (a), the same row after gaussian 

blurring (b), and the central difference of the gaussian-blurred row (c). 

Let us denote the sequence containing the central difference of a 

gaussian-blurred image row as ;y[n], with n ranging from 0 at the leftmost 

pixel in the the row to N at the rightmost pixel. To find the left edge location 

in a particular row, the program searched the sequence y[n] starting at its 

middle data point (y[N/2] for even N or y[(N-l)/2] for odd N) and scanned to 

the left, searching for the most positive value of y[n]. To find the right edge 

location, the program searched y[n] from the middle data point and scanned to 

the right, searching for the most negative value of y[n]. 

To find edge locations using the half power method, a simple 

thresholding scheme was used, and the program again took advantage of the a 

priori knowledge that the image feature was brighter than the background 

and centered in the image. Let us denote the sequence containing a gaussian- 

blurred image row as x[n], with n ranging from 0 at the leftmost pixel in the 

the row to N at the rightmost pixel. To find the left edge location in a 

particular row, the program searched the sequence ;t[n] starting at its middle 
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Grey Level 
Row slice from image s10n100.1.i 

. Row 256 

Position 

(a) 

Blurred (sigma = 6.0) slice from image s10rt100 1 
Grey level 

Row 255 

Position 

Central difference of blurred slice 
Grey level 

Figure 6.7. Image row at three steps of gradient maximum method of edge 
detection (a) Unblurred image row; (b) Gaussian-blurred version 
of (a); (c) Central difference of (b) 
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data point 0t[N/2] for even N or *[(N-l)/2] for odd N) and scanned to the left, 

searching for the first value of x[n] to fall below the grey level halfway 

between the feature and background grey levels (we will call this grey level 

the “half power grey level”). To find the right edge location, the program 

searched x[n] from the middle data point and scanned to the right, again 

searching for the first value of *[n] to fall below the half power grey level. 

The above implementation of the half power method was found not to 

have very good edge location performance for images with low SNR. The 

reason for this poor performance was evident from examining gaussian- 

blurred slices from low-SNR images and histograms of edge locations found 

using the method. In the histograms of edge locations, it was seen that several 

edges were declared very close to the center of the image feature (recall that 

the search algorithm starts looking for the edge locations at the center of the 

image feature). In the gaussian-blurred slices, it was seen that the noise 

amplitude was large enough to make the image slice dip below the half power 

grey level at many points inside the image feature. From these observations it 

was concluded that the simple thresholding scheme used in the half power 

edge location method made the method too sensitive to noise. To improve 

performance, a modified thresholding scheme, based on one used by Canny, 

was implemented. This scheme uses two threshold values and a sort of 

hysteresis to lower the sensitivity of edge location to noise. The sequence x[n] 

is again scanned to the left and to the right starting from the middle data 

point. However, the scan algorithm initially searches for the first value of 

*[n] to fall below a threshold lower than the half power grey level, then 

reverses scan direction and looks for the first value of x[n] to go back above 
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the half power level. (The second, lower threshold in this scheme was set to 

0.25 times the differences between the (higher) feature grey level and the 

(lower) background grey level.) The thresholding-with-hysteresis scheme 

brought about some improvement in the edge location performance of the half 

power method, but at low SNR values, the method still did not compare very 

favorably with the gradient maximum method. 

Upon finding edge locations for each image row using the user- 

specified edge detection method, the mean and variance of the locations of the 

left and right edges were calculated and stored. The program then 

incremented the value of Ob and repeated the entire process until the final 

value of ab was reached. The stored values of edge location mean and variance 

for each <Jb value were then written out to a file in a format suitable for 

making a range bar plot of (peilae) vs. ab- The program “xgraph” was then 

used to generate these plots. 

A sequence of test images with decreasing SNR was created using the 

Add White Noise function in HAPPI. The definition of SNR used for these 

images was the ratio of the signal strength to rms noise level; other definitions 

of SNR, such as the square of this ratio, and the logarithm of the square of this 

ratio are also used in the literature. By “signal strength,” we mean the 

difference between the foreground (i.e., the signal) and the background grey 

levels. The original noiseless image from which the sequence was created had 

a background grey level of 100 and a foreground grey level of 150, yielding a 

signal strength of 50 grey levels. These foreground and background values 

were picked so as to “center” the image feature within the 0-255 grey level 

dynamic intensity range of HAPPI’s image format, and so that noise could be 
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added to the original image at rms levels high enough to achieve an SNR as low 

as 0.25 without the noise significantly saturating the 0-255 grey level dynamic 

range. 

6.3.2 Determination of Critical Values of Blur Parameter 

The program mrowblur was run on each test image in the sequence 

using the gradient maximum method, and the results were graphed in a 

sequence of range bar plots. For the most part, the graphs appeared well- 

behaved. At any given SNR, edge location variance a1 2
e decreased, and mean 

edge location pe moved closer to true edge location, as the blur parameter Ob 

increased. However, some anomalies showed up in one or two plots, and were 

found to be due to one or two outliers in the histograms of edge locations. The 

program mrowblur was thus modified to discard these outliers in calculating 

edge location mean and variance. The modified version of mrowblur discarded 

edge locations outside the range i2oe in the histogram of edge locations and 

recalculated the values of |ie and ae. This version of mrowblur was then run 

again on the sequence of test images, and another sequence of range bar plots 

was made. This sequence is shown in Figure 6.8. From the sequence of plots in 

Figure 6.8, we may observe the following: 

1) At a given SNR, edge location standard deviation ae and bias (i.e., magnitude 

of the difference between mean edge location p.e and true edge location) 

decrease rapidly with increasing Ob at low values of Ob. but slow or stop 

decreasing with ab once a critical value of ab is reached. The critical value 
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of ab is thus the smallest (and therefore most computationally efficient) 

value of blur parameter that will yield the best attainable edge location 

estimate with the present edge location scheme. 

2) The critical value of Cb on each range bar plot was higher for images with 

lower SNR, and lower for images with higher SNR. For images with SNR 

above say 10, the critical value of ab was so low that for all practical 

purposes of edge location, it could be considered to be zero (i.e., no blurring 

is required for edge detection in an essentially clean image). 

3) The terminal value reached by ae at the critical value of ab was larger for 

smaller SNR’s, and smaller for larger SNR’s. 

The critical values of Ob at each SNR were picked off of the plots of 

Figure 6.8 by eye, and plotted as a function of SNR as shown in Figure 6.9. The 

critical ab values were selected from each plot as the value of ab at which the 

edge location bias and standard deviation for both the left and right edge 

ceased to decrease with increasing Ob- For parts (0, (g), and (h) of Figure 6.8, 

edge location bias and standard deviation fluctuate slightly about their 

terminal values as ab continues to increase beyond its critical value, making 

the selection of the critical ab values somewhat subjective. In selecting 

critical ab values from these three plots, we took into account the notion that 

the critical ab value should be a strictly decreasing function of SNR, and were 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.6.i 
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(a) 

Figure 6.8. Sequence of range bar plots of mean edge location ± one standard 
deviation vs. blur parameter ab, calculated using gradient 
maximum method for various values of SNR (a) SNR = 10.0 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.7.i 
Edge Location, pixels 
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Right Edge Location 

True Left Edge Location 

True Right Edge Location 

Blur parameter (sigma) 

(b) 

Figure 6.8. (cont’d) (b) SNR = 5.0 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.8.i 
Edge Location, pixels 

Left Edge Location 

Right Edge Location  

True Left Edge Location 

True Right Edge Location 

Blur parameter (sigma) 

(C) 

Figure 6.8. (cont’d) (c) SNR = 2.0 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.13.i 
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Figure 6.8. (cont’d) (d) SNR =1.5 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.2.i 
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Figure 6.8. (cont’d) (e) SNR =1.0 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.4.i 
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Figure 6.8. (cont’d) (f) SNR = 0.5 
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Mean edge loc’ns +/-1 stddev vs blur for image: slO.lO.i 
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Figure 6.8. (cont’d) (g) SNR = 0.33 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0.9.i 
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Figure 6.8. (corn’d) (h) SNR = 0.25 
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somewhat conservative, that is, we selected critical ab values that were well 

into the region of the plots where edge location bias and standard deviation 

had stabilized to within the bounds of the fluctuations about their terminal 

values. 

Critical blur parameter vs. SNR with outlier rejection 
Blur parameter (sigma_b) 

2.00 4.00 

Slgma_b 

SNR 

Figure 6.9. Critical value of blur parameter vs. image SNR 

With these critical values of Ob in hand, we were now ready to 

implement the scheme depicted in Figure 6.6 to measure the effect of HAPPI’s 

processing routines on image feature size. The same sequence of test images 
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used as input to the program mrowblur was processed by several of HAPPI’s 

noise filters and by a few other of HAPPI’s routines. Another program, 

rowblur, was used to find edge location mean and variance in the pre- 

processed and post-processed images. The operation of, and inputs to, rowblur 

were similar to those of mrowblur, with the differences being that rowblur only 

took a single value of blur parameter, and gave as output not only edge 

location mean and variance, but feature size mean and variance as well. The 

outlier rejection scheme discussed above in connection with mrowblur was also 

implemented in rowblur. Both the gradient maximum and half power edge 

detection methods were implemented in rowblur. However, as mentioned 

earlier in this chapter, the half power method was found to have relatively 

poor edge location performance at low SNR values, and so only the gradient 

maximum method was used in the measurements presented in the remainder of 

this thesis. Table 6.1 lists the values of blur parameter fed to the program 

rowblur for each value of the SNR of the pre-processed image. 

Table 6.1. Critical values of blur parameter as function of SNR 

Test image SNR 
10.0 
5.0 
2.0 
1.5 
1.0 
0.5 
0.33 
0.25 

Critical value of CTK 

0.1 
0.8 
4.6 
6.4 
12.6 
24.9 
30.7 
33.8 
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Note that the post-processed images in general will have a different (and, we 

hope, higher) SNR than the pre-processed images, but we use the same value 

of blur parameter in the rowblur program for measuring the pre-processed 

and post-processed images. In this way, we are applying the same operator to 

both images to obtain an estimate only of the effect of the processing routine 

alone on image feature size. In the next chapter, we present some background 

on the processing routines used and the results of our measurements. 
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CHAPTER 7: MEASUREMENT RESULTS 

7.1 Introduction 

In this chapter, we present feature size measurements on unprocessed 

noisy test images and on processed test images which have been filtered with a 

variety of HAPPI’s processing routines. Specifically, the routines tested were 

the adaptive smoothing and modified adaptive smoothing filters, the Kalman 

filter, the median and weighted median filter, the root filter, and the sigma 

filter, all found under HAPPI’s “Noise Filters” menu. Also tested were the 

histogram equalization and expand grey level (linear contrast stretch) 

routines, both from HAPPI’s “Contrast Enhancement” menu, and a simple 

uniform-weight lowpass filter from HAPPI’s “Convolution” menu. The effect 

of the scattering line spread function on mean and variance of edge location is 

briefly examined. Finally, selected feature size measurement results are 

compared with size measurements attainable using the traditional Sobel edge 

detection operator for doing edge location by visual inspection. 

7.2 Effect of Processing Routines on Feature Size 

We have chosen to display the effects of processing on image feature 

size in the following figures by plotting the mean feature size and the -1 

standard deviation range of feature size (i.e., pf - laf) vs. the SNR of the pre- 

processed image. (Note: the symbols pf and af were defined in Section 6.3 of the 

previous chapter.) The input images to each processing routine were the 
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same sequence of test images discussed in Subsection 6.3.1, and thus, for each 

of the graphs of (|_t f — 1 crf) vs. SNR in this chapter, the data for the pre- 

processed images is identical. Two images from this sequence, with SNR’s of 

1.0 and 0.25, respectively, are shown in Figure 7.1 and Figure 7.2. 

Ideally, the output image from one of HAPPI’s processing routines 

should have a higher SNR (thus yielding better edge location and size 

measurement performance) than the input image. However, regardless of the 

SNR of the output image, we have plotted the value of (p.f - lof) for each output 

image at the SNR of the corresponding input image. In this way, we are able to 

visualize the improvement (or degradation) of feature size estimate wrought 

by a given processing routine on a particular image with a particular SNR. 

Figure 7.1. Test image with SNR =1.0 
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Figure 7.2. Test image with SNR = 0.25 

The reader may wish to refer to Figure 7.3 in the next subsection to 

visualize the graph features in the following discussion. In the graphs of (pf - 

laf) (i.e., measured size) vs. SNR presented in this chapter, there are three line 

styles, one each for the measured size in the pre-processed image, the 

measured size in the post-processed image, and the actual image feature size 

(which was 101 pixels for all test images). The measured size in the pre- 

processed images is plotted with a solid line, while the measured size in the 

post-processed images is plotted with a dotted line, and the actual size is plotted 

with a dashed line. Three curves appear on the graph in the solid line style of 

feature size data for the pre-processed images. The top curve represents the 



www.manaraa.com

187 

mean feature size plus one standard deviation (i.e., pf + ltff), while the middle 

curve represents mean feature size, and the bottom curve represents mean 

feature size minus one standard deviation (i.e., pf - laf). Another such set of 

three curves in the dotted line style of feature size data for the post-processed 

images also appears on the graph. Finally, in each graph, a single straight 

line in the dashed line style, representing actual feature size (which has no 

random variation), is plotted for reference. In the next several subsections, 

we briefly discuss the theory behind each of the processing routines tested, 

state the parameter values used in each routine, present measurement results, 

and give some discussion of salient points. 

7.2.1 Adaptive Smoothing Filter 

Happi contains two adaptive smoothing filter routines, the “Adaptive 

Smoothing Filter” and “Modified Adaptive Smoothing Filter”, found under the 

Noise Filters menu. These filters are based on the paper by Kuan et al. (1985) 

and are similar in operation. The assumed image degradation model used in 

developing the filter is of the form (Zheng and Basart, 1988): 

y(i,j) = x(i,j) + u(i ,j) (7.1) 

where y(i,j) is the observed, degraded image, x(i,j) is the original image before 

degradation, and u(i,j) is the signal-dependent degradation term. The 

degradation term u(i,j) is given by: 
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u (i ,j) = f(x(i,j))n(i ,j) (7.2) 

where f(x(i,j)) models the signal dependency, and n(i,j) is iid(0,l) random 

noise. The filter produces an estimate of each pixel value of the form: 

x(ij) = x(i,j) + k(ij)(y(ij) - x(i,j)) (7.3) 

where *0J) is the estimate of the original, undegraded image at location (i,j), 

x(ij) is the local mean, and k(i,j) is a local calibration factor, given by: 

k(i,j) = (1 - VuiiJ)IVyii'j)) (7.4) 

where Vu(i,j) is the local variance of the signal-dependent noise, and Vy(i,j) is 

the local variance of the observation. Since n(i,j) is zero-mean, the 

covariance between x(i,j) and u(i,j) is zero (Zheng and Basart, 1988), and 

Vy(i,j)=Vx(i,j) + Vu(i,j), so that k(i,j) may be written as: 

k(i,j) = Vx(ij)/(Vx(ij) + Vu{i,j)) (7.5) 

Note from Equation 7.5 that if the local SNR is much greater than 1, then k(i,j) 

is approximately equal to 1, and the estimate *(*>./) in Equation 7.3 is equal to 

the observation y(i,j), while if the local SNR is much less than 1, then k(i,j) is 

very small and the estimate x(i,j) in Equation 7.3 is approximately equal to the 

local mean x(i>j). 
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Both the adaptive smoothing filter and the modified adaptive smoothing 

filter take two parameters: an increment and a window size. The modified 

adaptive smoothing filter additionally requires the user to specify an area of 

the input image from which to calculate a value of noise variance which is 

used globally throughout the image, whereas the adaptive smoothing filter 

requires no such input, and automatically calculates local noise variance from 

the first difference of the input image. The window size parameter simply 

specifies the length of one side of the square window used to calculate signal 

and noise variance. The increment parameter specifies the number of pixels 

by which the window used to calculate signal and noise variance is moved for 

each such calculation. For both adaptive smoothing filters, an increment of 1 

and a window size of 7 were used. The window size is constrained by HAPPI to 

be an odd number. A 7x7 window yields a sample size of 49 from which to 

calculate signal and noise variances; a minimum sample size of 30 to 50 is 

generally considered necessary for meaningful calculations of statistics, and 

so a window size of 7 is the smallest odd value that yields a “good” sample size. 

A larger window size was avoided to keep execution time down. 

Figure 7.3 is a plot of measured feature size vs. SNR for the adaptive 

smoothing filter. Let us denote the value of pf and of in the pre-processed 

images by Pf(pre) a°d crf(pre)> respectively, and similarly denote the value of pf 

and Of in the post-processed images by Pf(post) ar*d crf(p0st)> respectively. The 

following observations may be made about Figure 7.3: 

1) The value of af(pre) becomes very large at low values of SNR. Recall, 

however, that the statistics we are calculating for feature size are from a 



www.manaraa.com

190 

population of feature sizes measured from individual noisy image rows. It 

is to be expected that when edge location and feature size are estimated 

from a single image row with a low SNR, the measurement will likely be 

Adaptive smoothing filter w/7x7 window; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.3. Measured size vs. SNR for adaptive smoothing filter 
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considerably in error for any given row. Only when the measurements are 

averaged do they begin to reasonably approximate the true feature size. 

2) The value of |a.f(pre) stays quite close to the actual feature size until the SNR 

drops below about 0.5; as SNR decreases further, pf(pre) begins to increase 

rapidly. 

3) The value of <Jf(post) 
is generally smaller than that in the pre-processed 

images, and is especially so as SNR decreases. For SNR larger than about 5, 

the filter does not appear to improve the feature size estimate. 

4) The value of M-f(Post) stays much closer to the actual feature size than Pf(pre) 

at low SNR. However, there are small fluctuations in |if(p0st) about actual 

feature size as SNR decreases. 

Figure 7.4 is a plot of measured size vs. SNR for the modified adaptive 

smoothing filter. It may be seen that the above observations about Figure 7.3 

apply to Figure 7.4 as well. In fact, the behavior of the graphs of measured 

size vs. SNR for pre-processed and post-processed images is qualitatively very 

similar for all of the noise filters used in this study; the differences between 

these filters in terms of influence on measured feature size are mostly 

quantitative. Figure 7.5 compares measured size vs. SNR for the adaptive 

smoothing filter and modified adaptive smoothing filter. 
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Modified adaptive smoothing filter w/7x7 window; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.4. Measured size vs. SNR for the modified adaptive smoothing filtei 
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Comparison of adaptive smoothing filters 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.5. Measured size vs. SNR for adaptive and modified adaptive smoothing 
filters 
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7.2.2 Kalman Filter 

The Kalman filter is an optimal linear filter for recursively separating 

two random processes which may have overlapping spectral density 

functions. In the Kalman filter formulation, one random process usually 

represents the signal of interest while the other represents unwanted 

measurement error. The random processes are formulated in a state vector 

representation and the mean square error is minimized, resulting in a 

recursive algorithm which constitutes the Kalman filter. The reader is 

referred to Brown (1983) for a well-written introduction to Kalman filtering 

theory. The Kalman filtering routine presently in HAPPI was translated from 

the one used in Safae-nili’s (1989) thesis; Safae-nili’s Kalman filter routine 

was based on the work of Biemond (1983, 1986). In this filter, the random 

process representing the signal is modeled as an AR(1) process in both the 

horizontal and vertical direction. The filter models not only degradation from 

noise but also blur, which may be caused by the imaging system used to create 

the image. The imaging system blur is modeled as a 2-d circularly symmetric 

gaussian function. Both pre- and post-blur noise are modeled. The input 

parameters for HAPPI’s Kalman filtering routine and their meaning are listed 

in Table 7.1 (note: PSF stands for Point Spread Function). For the experiments 

in this study, the parameter values used were as listed in Table 7.2. The 

parameter PZero was set equal to the value of the noise variance in each test 

image. The parameters RhoH and RhoV were set to the relatively high value of 

0.9 to reflect the nature of the test image feature; since the feature was of a 
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Table 7.1. Parameters of HAPPI’s Kalman filter 

Parameter 
RhoH 
RhoV 
SigmaU 
SigmaW 
PZero 
Beamsize 
Beamvariance 

Meaning 
Horizontal correlation coefficient of signal process 
Vertical correlation coefficient of signal process 
Standard deviation of pre-blur noise 
Standard deviation of post-blur noise 
Initial error estimate (see Brown (1983) for theory) 
Length of one side of imaging system’s gaussian blur PSF 
Variance of imaging system’s gaussian blur PSF 

Table 7.2. Kalman filter parameter values used 

Parameter Value 
RhoH 0.9 
RhoV 0.9 
SigmaU 0.001 
SigmaW 1.0 
Beamsize 3 
Beamvariance 0.1 

single, constant grey level, its pixels are very highly correlated. In this 

Kalman filter routine, it turns out that if the ratio of SigmaU to SigmaW is very 

small, the filter will primarily smooth noise, while if this ratio is large, the 

filter will primarily do deblurring of the gaussian imaging system PSF. 

Because our test images are not intended to model imaging system blur, we 

chose values of SigmaU and SigmaW which made the ratio SigmaU/SigmaW 

small, so that the filter would only filter noise. The values of Beamsize and 

Beamvariance were also chosen to be the smallest values allowed by the 

current implementation of the routine so as to deemphasize the deblurring 

action of the filter. The current implementation of HAPPI’s Kalman filter only 

accepts square images whose dimensions are integer powers of two. Figure 7.6 
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is a graph of measured size vs. SNR for the Kalman filter. Note that the graph 

has the same general characteristics as those of the previous subsection. 

However, the Kalman filter, as run with the above parameter values, did not 

perform quantitatively as well - with respect to measured feature size - as the 

adaptive smoothing filter of the previous subsection. In a subsequent 

subsection, the performance of all of the noise filters is compared. 

Kalman filter; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.6. Measured size vs. SNR for the Kalman filter 
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7.2.3 Median Filter 

The median filter is a nonlinear filter which is good for suppressing 

impulsive noise while preserving edges. This filter simply moves a window 

through the image and replaces the pixel at the center of the window with the 

median of all the pixels in the window. HAPPI contains two median filtering 

routines. The first routine, called simply the “median filter” performs just the 

algorithm described above, and is implemented using the fast algorithm of 

Ahmad (1987). This routine takes as its only parameter the size of the window 

in which the median is computed. The second routine is called the “weighted 

median filter,” and takes a center pixel weight parameter as well as a window 

size parameter. To compute the median of a set of numbers, the set is ranked in 

ascending or descending order, and, for a set with an odd number of elements, 

the middle value in the ranking is identified as the median; for an even 

number of elements, the median is computed as the average of the two middle 

values in the ranking. In the weighted median filter, the pixel at the center of 

the filter window is replicated in the ranking used to find the median. The 

value of the center pixel weight parameter is the number of times the center 

pixel is replicated. The weighted median filter thus has increased likelihood 

that the center pixel in the filter window will be selected in the computation of 

the median. For consistency of window size with other routines and for 

purposes of having a “good” sample size, a 7x7 window was used in both the 

median and weighted median filters in our tests. The center pixel weight in 

the weighted median filter was set to 10, which is about 20% of the sample size 
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of 49 obtained with a 7x7 window. Also, a 15x15 window was tried with the 

median filter. Figure 7.7 is a graph of measured size vs. SNR for the median 

filter using a 7x7 window; Figure 7.8 shows measured size vs. SNR for the 

median filter using a 15x15 window. 

Median filter w/7x7 window; image: slO.l.i 
Measured site, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.7. Measured size vs. SNR for median filter with 7x7 window 
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Median Alter w/15xl5 window; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

7.8. Measured size vs. SNR for median filter with 15x15 window 
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Note that the median filter’s performance with a 15x15 window is 

slightly better than its performance with a 7x7 window. Figure 7.9 shows 

measured size vs. SNR for the weighted median filter using a 7x7 window and a 

center pixel weight of 10. The performance of the weighted median filter is 

Weighted median; 7x7 window, weight=10; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.9. Measured size vs. SNR for weighted median filter 
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slightly worse than that of the regular median filter with the same window 

size. The performance of the median and weighted median filters from Figures 

7.7, 7.8, and 7.9 is compared in Figure 7.10 (note that only measured size of 

post-processed images is plotted in this graph). 

Median filter: 7x7,15x15, weighted 7x7 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

(a) 

Figure 7.10. Comparison of measured size performance of median filter with 
two window sizes and weighted median filter (a) Plot of full SNR 
range tested 
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Median filter: 7x7,15x15, weighted 7x7 
Measured size, pixels 

0.00 0.50 1.00 1.50 2.00 

(b) 

Figure 7.10. (cont’d) (b) Enlargement of portion of (a) from SNR=0 to SNR 
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7.2.4 Root Filter 

The root filter is a nonlinear filter defined by the equation (Jain, 1989, 

p. 291): 

f/(coi,co2) = IVlaexp{j0v} (7.6) 

where v(x\,X2) is the input image, u(x\,X2) is the output image, V^co 1,(02) and 

U(to 1,(02) are the Fourier transforms of v(xi,X2) and u(x\,X2)> respectively, and 

j is the imaginary operator. This filter operates by taking the Fourier 

transform of the input image, forming the magnitude and phase of the 

resulting frequency-domain data, and raising the magnitude to the power a 

while leaving the phase unchanged. The transformed frequency-domain data 

is then inverse Fourier transformed to yield the spatial-domain output image 

u(xi,X2)- Using a value of a less than one makes the root filter behave like a 

high-pass filter, while a value of a greater than one results in a low-pass filter 

effect. It was found that values of a greater than about 3.5 introduced artifacts 

in the root filtered image and greatly distorted the image feature. A value of 

2.5 was used for a in all processing done with the root filter. Figure 7.11 shows 

measured size vs. SNR for the root filter. It may be seen from Figure 7.11 that 

the mean feature size of the post-processed image p.f(p0st) has a slight dip in it 

at SNR=0.33. The graphs for other processing routines have similarly 

nonmonotonic behavior of pf(post) at low SNR, as may be seen, for example, 

from Figure 7.10(b), but this behavior seems to be more pronounced for the 

root filter. 
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Root filter w/exponent=2.5; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.11. Measured size vs. SNR for root filter 
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HAPPI’s sigma filter is based on the paper by Lee (1984). The sigma 

filter determines the rms value, o, of the pixel intensities within a moving 

window, and averages all pixels whose intensities fall within ± 2a of the 

intensity of the center pixel in the window. The average thus computed is 

assigned to the center pixel in the window. To calculate the rms value of pixel 

intensities in the window, the filter first forms the first difference of the 

input image. As the window moves through the input image, a corresponding 

window of the same size is moved through the first difference image, and the 

rms value a is calculated as the standard deviation of the first difference 

image’s pixels in the window. The filter may be applied repeatedly to an 

image. The sigma filter takes two parameters, the number of passes, and the 

window size. The number of passes parameter determines how many times the 

filter is applied to the image. The window size parameter is simply the length 

of one side of the square window in which the value of a is computed and 

pixels in the - 2a range are averaged. For all images processed with the sigma 

filter, a window size of 7x7 was used, and the number of passes was set to 1. 

Figure 7.12 shows measure size vs. SNR for the sigma filter. It may be seen 

from Figure 7.12 that the graph behaves qualitatively like the other graphs 

for the previously discussed noise filters. 
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Sigma filter w/7x7 window; image: slO.Li 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.12. Measured size vs. SNR for sigma Filter 
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7.2.6 Lowpass Filter 

A uniform-weight lowpass filter was applied to the sequence of noisy 

test images. This filter simply moves a window through the image and 

replaces the pixel at the center of the window with an unweighted average of 

all the pixels in the window. A 7x7 window was used for our tests, for 

consistency with the window size used in the other filters. Figure 7.13 shows 

measured size vs. SNR for the lowpass filter. 

Low pass filter w/7x7 window; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.13. Measured size vs. SNR for lowpass filter with 7x7 window 
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The graph of Figure 7.13 behaves much the same as those for the noise filters 

of the previous subsections at values of SNR below about 4.0. Note, however, 

that at higher SNR values, the feature size estimate for the post-processed 

images is slightly worse than that for the pre-processed images. This behavior 

is likely attributable to the relatively low values of blur parameter used in the 

program rowblur for images with SNR’s of 5 and 10 (refer back to Table 6.1). 

Recall that these values were obtained from the sequence of pre-processed 

images under the tacit assumption that they would be more than adequate for 

post-processed images. 

Unlike the noise filters of the previous subsections, the lowpass filter is 

not designed to keep edges sharp in an image. When the lowpass filter is 

convolved with the 2-6 pulse of Figure 6.1, the output image is a 2-d trapezoidal 

pulse. A 1-d slice through the trapezoidal pulse will then be a 1-d trapezoidal 

pulse, which will have a finite, constant slope in an interval about an edge 

location, as shown in Figure 7.14. 

Figure 7.14. One-dimensional trapezoidal pulse obtained by taking 1-d slice 
from convolution of square-edge pulse with uniform-weight 
lowpass filter 
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Under the “gradient maximum” definition of edge location then, the edge 

location is ambiguous for such a trapezoidal pulse. Convolution of the 

trapezoidal pulse with a gaussian smoothing function, provided the width of 

the smoothing function is not too small compared to the dimension W1 in 

Figure 7.14 but is smaller than half the dimension W2 in Figure 7.14, will yield 

a pulse with smoothed edges of non-constant slope, for which the edge 

locations will no longer be ambiguous under the gradient maximum edge 

definition. The post-processed images from the lowpass filter were run 

through rowblur with slightly higher values of blur parameter than the 

nominal values of Table 6.1, and the feature size estimate for the post- 

processed images was seen to improve to be at least as good as that for the pre- 

processed images at high SNR values. 

7.2.7 Comparison of Noise Filters and Overall Characteristics 

In Figure 7.15, we compare the performance of all of the filters in 

Subsections 7.2.1 through 7.2.6. Since the feature size data for pre-processed 

images were the same for each filter, only feature size of post-processed 

images is plotted here for purposes of comparison between filters. It is clear 

that there is a strong dependence of af(p0st) on SNR, with ctf(Post) dramatically 

decreasing as SNR increases over the range 0.25 to about 2.0. For an SNR (of 

pre-processed images) above about 2.0, measured feature size in post-processed 

images is about the same for all of the filters (except for the anomalous 

behavior of the lowpass filter seen in Figure 7.13 at high SNR values), and has 
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a mean very close to the actual feature size of 101 pixels and a standard 

deviation of about one pixel. Below SNR=2.0, the various filters, with the 

exception of the root filter, manage to keep the mean feature size close to the 

actual size, but with small fluctuations about the mean. The main difference 

between most of the noise filters then seems to be in their effect on the 

standard deviation of the feature size estimate, (Jf(post)- We recognize that 

lower values of af(p0st) are associated with higher values of SNR, so the data 

plotted in Figure 7.15 are also an indirect measure of how the various noise 

filters raise SNR. In all the graphs of measured size vs. SNR in Subsections 

7.2.1 through 7.2.5, the value of cTf(p0st) is less than that of af(pre) at all values 

of SNR, by anywhere from a few percent at high SNR’s to 300% low SNR’s. This 

is intuitively satisfying, as it indicates that all of these noise filters serve to 

raise the SNR of the input image, yielding an improved feature size estimate. 

The reader may have noted the anomalous behavior of the root filter in 

Figure 7.11. In Figure 7.16, we plot the same information as in Figure 7.15 but 

with the data set for the root filter removed. From Figure 7.16 we may clearly 

see that the Kalman filter has the worst feature size performance (i.e. highest 

standard deviation of feature size), followed by the sigma Filter. We also note 

that the Kalman filter has the worst feature size bias (i.e. magnitude 

difference between estimated mean feature size and actual feature size), at 

about 5 pixels, at the lowest SNR value tested. It is of interest that the output 

images from the Kalman filter appeared to have more sharply defined edges 

than those from the median filter, which looked mottled at low SNR values. In 

spite of a visual appearance of better output image quality from the Kalman 

filter, the programs used in this study to measure edge location and feature 
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Comparison of various noise filters 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

(a) 

Figure 7.15. Comparison of various noise filters (a) All filters; full range of 
SNR plotted 
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Comparison of various noise filters 
Measured size, pixels 

Adap smooth 

T^aiman 
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Med "15x15 

TvlodAdapSmooth 

Root;exp=2.5 

Sigma 7x7 

Vt Med 7x7;10wt 
a     
Actual Size 

SNR 
0.00 0.50 1.00 1.50 2.00 

(b) 

Figure 7.15. (cont’d) (b) Selected filters; full range of SNR plotted 
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Comparison of various noise filters 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

(c) 

Figure 7.15. (cont’d) (c) All filters; range from SNR=0.0 to SNR=2.0 plotted 
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Comparison of various noise filters 
Measured size, pixels 

Adap smooth 

Caiman 

l-owp 7x7 

Tvied 7x7 

Hoot;exp=2.5 

Tigma7xT ~ 

Actual Size 

SNR 

(d) 

Figure 7.15. (cont’d) (d) Selected filters; range from SNR=0.0 to SNR=2.0 plotted 
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Comparison of various noise filters 
Measured size, pixels 

0.00 0.20 0.40 0.60 0.80 1.00 

(a) 

Figure 7.16. Comparison of noise filters without root filter (a) All filters except 
root; range from SNR=0.0 to SNR=1.0 plotted 
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Comparison of various noise filters 
Measured size, pixels 

Adap smooth 

T^aiman 

towp 7x7 

faedfx?’" 
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Actual Size 

SNR 

(b) 

Figure 7.16. (cont’d) (b) Selected filters without root filter; range fror 
SNR=0.0 to SNR=2.0 plotted 
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size in an objective, repeatable, and statistically meaningful way found the 

Kalman filter to have significantly poorer performance than other faster and 

less sophisticated algorithms. The adaptive smoothing filter, lowpass filter, 

and median filter with 7x7 window all have a standard deviation of feature size 

lower than those for the Kalman and sigma filters, and among themselves are 

fairly close in feature size performance. The median filter with 15x15 window 

has the very lowest standard deviation of feature size of all the filters. 

The measurements presented graphically in Section 7.2 above are 

tabulated in Table 7.3 for reference. The numbers without parentheses are the 

mean feature size, and the numbers in parens are the corresponding standard 

deviation of feature size. The numbers across the top of the table are the SNR 

values of the pre-processed images, and the first row of mean and standard 

deviation data is for the pre-processed images. In the far right column, the 

execution time of each routine on the Stellar GS1025, as carefully timed with a 

stopwatch, is listed. 

We see from the table that at the lowest SNR level used in this study 

(SNR=0.25), the standard deviation of post-processed feature size for the 

Kalman filter was about 78% higher than that for the median filter with a 7x7 

window, and almost 100% higher than that for the median filter with a 15x15 

window. We also note that the execution time of the Kalman filter is about 36 

times that of the median filter with a 7x7 window. Clearly, at least within the 

domain of the idealized images studied here, the median filter gives the best 

feature size estimate while simultaneously having the fastest execution time. 

The other two filters with feature size estimation performance close to that of 

the median filter, namely the adaptive smoothing filter and the lowpass filter, 
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Table 7.3. Mean and standard deviation of feature size for pre- and post- 
processed images 

Routine 

SNR Proc. 
time, 

0.25 0.33 0.5 1.0 1.5 2.0 5.0 10.0 mm:ss 

Pre- 
processed 
images 

118.9 
(39.10) 

110.3 
(32.02) 

102.2 
(25.68) 

101.1 
(7.272) 

100.9 
(3.693) 

101.0 
(2.145) 

101.2 
(0.712) 

101.0 
(0.678) 

N/A 

Adaptive 
Smoothing 
Filter 

101.9 
(15.60) 

100.6 
(11.74) 

101.3 
(8.714) 

101.3 
(1.914) 

100.9 
(1.174) 

101.2 
(0.802) 

101.2 
(0.673) 

101.0 
(0.679) 

04:17 

Kalman 
Filter 

105.9 
(25.67) 

101.5 
(19.13) 

101.4 
(11.16) 

100.9 
(2.854) 

100.8 
(1.273) 

101.1 
(0.757) 

101.8 
(0.434) 

101.0 
(0.630) 

19:07 

Median 
Filter 
7x7 

99.67 
(14.43) 

99.31 
(11.39) 

101.0 
(8.662) 

100.9 
(2.262) 

100.9 
(1.045) 

101.0 
(0.656) 

101.1 
(0.707) 

100.7 
(0.693) 

00:32 

Median 
Filter 
15x15 

103.2 
(12.85) 

101.3 
(8.918) 

100.8 
(5.962) 

100.2 
(1.712) 

101.0 
(0.731) 

101.1 
(0.749) 

101.1 
(0.612) 

100.6 
(0.733) 

00:54 

Mod. Adapt. 
Smoothing 
Filter 

100.4 
(13.47) 

100.4 
(11.47) 

101.9 
(8.337) 

100.9 
(2.282) 

100.8 
(1.158) 

101.0 
(0.877) 

101.2 
(0.703) 

101.0 
(0.689) 

03:17 

Root 
Filter 

111.9 
(17.23) 

108.3 
(13.36) 

112.3 
(5.390) 

105.1 
(1.503) 

102.0 
(0.928) 

101.5 
(0.614) 

101.3 
(0.660) 

100.0 
(0.00) 

02:50 

Sigma 
Filter 

102.8 
(21.94) 

101.2 
(16.19) 

102.2 
(9.373) 

101.0 
(2.502) 

100.7 
(1.306) 

101.0 
(0.956) 

101.2 
(0.721) 

100.9 
(0.710) 

07:06 

Weighted 
Median 
Filter 

100.3 
(16.93) 

99.94 
(13.57) 

101.0 
(8.250) 

100.9 
(2.643) 

100.8 
(1.083) 

100.9 
(0.802) 

101.0 
(0.689) 

101.0 
(0.660) 

10:10 

Lowpass 
Filter 
7x7 

100.5 
(13.70) 

101.7 
(12.39) 

101.6 
(9.04) 

101.4 
(1.861) 

100.9 
(0.943) 

101.0 
(0.748) 

100.8 
(1.493) 

99.31 
(2.158) 

01:35 
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have execution times respectively 800% and 300% slower than that of the 

median filter. 

7.2.8 Histogram Equalization 

As its name implies, the histogram equalization algorithm attempts to 

equalize (i.e., make uniform) the histogram of the input image. This algorithm 

is a contrast enhancement tool, and not a noise filter. Unlike the filters of the 

previous subsections, histogram equalization is a point transformation - each 

pixel is transformed by the same function, and the values of its neighboring 

pixels have no influence on its transformed value. The transformation 

function for histogram equalization is simply the cumulative distribution 

function for the image. The reader is referred to Gonzalez and Wintz (1987, p. 

146) and Jain (1989, p. 241) for further details. HAPPI’s histogram equalization 

routine takes no parameters. Figure 7.17 shows measured size vs. SNR for 

HAPPI’s histogram equalization routine. It may be seen from Figure 7.17 that 

at SNR’s below about 1.0, histogram equalization has little effect on the feature 

size estimate. However, at higher SNR’s, the feature size estimate for post- 

processed images is far worse than that for pre-processed images. This is due 

to the fact that for test images with high SNR, histogram equalization greatly 

increased the noise variance without increasing the signal strength by nearly 

as much. At high SNR values, the histograms of the pre-processed test images 

were strongly bimodal, with the histogram data tightly clustered about the two 

modes, and with one mode strongly dominating. When such a histogram is 

equalized, the histogram data representing the noise tends to get spread out by 
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a much larger factor than the data representing the clean signal; the result is 

a dramatic decrease in SNR, which in turn degrades feature size estimate. 

Figure 7.17 shows the histograms of a test image with an SNR of 10 and the 

histogram-equalized version of the test image. From Figure 7.16 we can 

conclude that for purposes of edge detection and feature size measurement in 

noisy images, histogram equalization does not effect any improvement. 

Histogram equalization; image: slO.l.i 
Measured size, pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.17. Measured size vs. SNR for histogram equalization 
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(a) 

(b) 

Histogram of image: sl0n5.1.i 
Frequency x 1(P 

Histogram of image: sl0n5.2.i 
Frequency x 1(P 

; I I I I I I Histogram 
20.00 i— 

Figure 7.17. Histogram equalization results (a) Histogram of original test image 
with SNR = 10.0; (b) Histogram of histogram-equalized image from 
(a) 
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7.2.9 Contrast Stretching 

HAPPI’s contrast stretching routine, “Expand Grey Level,” found under 

the Contrast Enhancement menu, does a simple remapping of individual pixel 

grey levels. Like histogram equalization, it is a point transformation. The 

routine takes two parameters, an upper and a lower grey level. All image data 

below the lower grey level is mapped in the output image to grey level zero; 

image data above the upper level is similarly mapped to grey level 255, the 

maximum grey level in HAPPI’s image format. All image data falling between 

the upper and lower grey levels is remapped to the 0-255 grey level range in a 

linear fashion. The transformation may be written as: 

y(i,j) = (x(i,j)-a)*255/(P - a); a < x(ij) < P (7.7.1) 

y(i,j) = a; x(i,j) < a (7.7.2) 

y(i,j) = P; x(i,j) > P (7.7.3) 

where y(i,j) is the output image, x(i,j) is the input image, and p and a are the 

upper and lower grey levels, respectively. In our tests, we used an upper grey 

level of 150 and a lower grey level of 100, equal to the grey levels of the 

foreground and background, respectively, in our original noiseless test image. 

Figure 7.18 shows measured size vs. SNR for the contrast stretch routine. From 

the figure, we may see that contrast stretching has almost no effect on the 

feature size estimate of the post-processed image. Table 7.4 lists feature size 

mean and standard deviation data for histogram equalization and contrast 

stretching in the same format as Table 7.3. 
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Contrast stretch; image: slO.l.i 
Measured si». pixels 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 7.18. Measured size vs. SNR for contrast stretch routine 
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Table 7.4. Mean and standard deviation of feature size for histogram 
equalization and contrast stretch 

Routine SNR Proc. 
time, 

mm:ss 0.25 0.33 0.5 1.0 1.5 2.0 5.0 10.0 

Pre- 
processed 
images 

118.9 
(39.10) 

110.3 
(32.02) 

102.2 
(25.68) 

101.1 
(7.272) 

100.9 
(3.693) 

101.0 
(2.145) 

101.2 
(0.712) 

101.0 
(0.678) 

N/A 

Histogram 
Equalization 

113.9 
(39.81) 

107.3 
(30.76) 

101.3 
(24.88) 

102.4 
(8.805) 

102.2 
(5.969) 

104.3 
(11.42) 

246.6 
(88.75) 

243.4 
(92.33) 

00:08 

Contrast 
Stretch 

m.i 
(35.55) 

110.7 
(35.02) 

102.7 
(27.58) 

101.6 
(9.206) 

101.0 
(5.006) 

100.9 
(1.547) 

101.1 
(0.718) 

101.0 
(0.661) 

00:09 

7.3 Effects of Scattering LSF 

In an actual radiograph, we would not see perfect step edges like those 

in our test images, even if the physical specimen from which the radiograph 

was made had such a perfect edge. Even perfect step edges in the specimen 

will be imaged on a radiograph with a certain amount of blur due to different 

physical phenomena, such as scattering, geometric unsharpness, film 

unsharpness, etc. Thus, while the measurements presented so far give a sense 

of how well we can measure feature size and of how HAPPI’s processing 

routines change the size of an idealized image feature, they are somewhat 

removed from the results we would get with images of real radiographs. To 

briefly investigate the effects of non-ideal edge profiles on edge location and 

feature size measurement performance, we convolved a test image similar to 

that of Figure 6.1 with a two-dimensional version of the line spread function 
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of Equation 5.4, using various values of the scattering unsharpness parameter 

a of that equation. The test image used in this case consisted of a uniform 

background of grey level 100 with a uniform-width, uniform-intensity 

vertical stripe of grey level 150 centered in the image, as shown in Figure 7.19. 

Figure 7.19. Test image used to test effects of scatter unsharpness 
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This test image could be considered a primitive model of a slot of 

uniform cross-section in a flat plate. We used this test image instead of the 

image of Figure 6.1 so that we could apply large 2-d scattering unsharpness 

blur functions to it and still calculate valid edge location and feature size 

statistics from row ensemble averages. Had we convolved the test image of 

Figure 6.1 with a large 2-d version of the LSF of Equation 5.4, we would have 

smeared the perfect step edges of that image in both spatial directions, and 

would not have had a large sample size of 1-d image slices with identical 

statistical properties from which to compute the mean and standard deviation 

of edge location and feature size. 

Noise was added to the blurred images in various amounts, and the 

resulting blurred, noisy images were run through the program mrowblur to 

generate plots of edge location mean and variance vs. gaussian blur 

parameter, at,. The gradient maximum method was again used exclusively 

when running mrowblur. A few selected range bar plots from mrowblur are 

shown in Figure 7.20. We may observe the following from the plots of Figure 

7.20: 

1) As the scattering unsharpness parameter a of Equation 5.4 decreases, the 

critical value of the gaussian blur parameter ab increases. (Refer to 

Section 6.3.2 for a discussion of how critical <Jb values were determined 

from range bar plots of edge location vs. ab-) 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0s2nl00.1.i 
Edge Location, pixels 

(a) 

Figure 7.20. Range bar plots of mean edge location — one standard deviation vs. 
blur parameter for test images with scatter blur and noise (a) 
SNR=0.5; scatter blur parameter a=0A 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0s6nl00.1.i 
Edge Location, pixels 

(b) 

Figure 7.20. (corn’d) (b) SNR=0.5; scatter blur parameter a=0.1 
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Mean edge loc’ns +/-1 stddev vs blur for image: sl0s9nl00.1.i 
Edge Location, pixels 
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e 7.20. (cont’d) (c) SNR=0.5; scatter blur parameter a=0.04 
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2) As the parameter a decreases, the terminal value of edge location standard 

deviation <je (i.e. the almost constant value attained by <je as <Jb increases 

beyond its critical value) increases as well. 

The above two observations may be explained by considering the effect 

of the parameter a on the size of the scattering unsharpness blurring 

function; small values of a yield spatially large blurring functions, and vice 

versa. A small value of a will thus result in more smearing of sharp edges. 

When edges are detected using a gradient scheme such as the one we have used 

in this study, a slowly rising edge will naturally be harder to locate precisely 

in a noise field of a given strength than a sharply rising edge in the same 

noise field. 

To investigate the relationship between SNR and feature size estimation 

performance in an image with blurred step edges, we blurred the test image of 

Figure 7.19 with a 2-d version of the LSF of Equation 5.4, using an unsharpness 

parameter of 0.2. Various amounts of noise were added to the blurred test 

image to produce a sequence of test images of decreasing SNR similar to that 

described in Section 6.3.1. The program mrowblur was run on this sequence of 

test images to produce a sequence of range bar plots of edge location mean and 

standard deviation vs. gaussian blur parameter ab- Critical Ob values were 

determined from the sequence of range bar plots in the same way as described 

in Section 6.3.2. 

The critical <Tb values for the blurred test image are shown in Table 7.5. 

Note that at high SNR’s the critical ab values are somewhat higher for the 

blurred test image than those for the test image with perfect step edges (Cf. 
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Table 6.1). The higher ab values seen with the blurred image is most likely due 

to the fact that to a gradient operator, a slowly rising edge bathed in noise of a 

given strength has a lower signal-to-noise ratio than a step edge bathed in 

noise of the same strength. Thus, it was neccessary to use slightly larger ab 

values with the blurred test image to reduce the heightened effect of noise on 

edge location estimate. At lower SNR’s, the critical ab values are slightly lower 

than the corresponding values in Table 6.1, but the percentage difference of 

ab between the two tables at low SNR is small. 

Table 7.5. Critical values of blur parameter as function of SNR for blurred test 
image 

Test image SNR 
10.0 
5.0 
2.0 
1.5 
1.0 
0.5 
0.33 
0.25 

Critical value of ab 
1.0 
2.0 
5.0 
7.0 
10.0 
22.0 
28.0 
33.0 

To investigate how HAPPI’s noise filters might fare in improving 

feature size estimate in an image with blurred step edges, we ran the adaptive 

smoothing filter on the sequence of noisy blurred test images created from the 

test image of Figure 7.19. The critical ab values of Table 7.5 were fed as input to 

the rowblur program to determine mean and standard deviation of feature size, 

and the pre-processed and post-processed size estimates were plotted as a 
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function of SNR as shown in Figure 7.21. Note that at high SNR’s the standard 

deviation of feature size for the blurred pre-processed image is much larger 

(at about 5 pixels) than that for the pre-processed images in Section 7.2, due to 

the gradient operator having to search for a weaker (and thus harder-to- 

locate) signal. 

Median filter w/7x7 window; image: c8s4.1.i; a=0.2 
Measured size, pixels 

Vre-processed 

l?ost-processed 
<A~ctuaf Size 

SNR 

Figure 7.21. Measured size vs. SNR for adaptive smoothing filter and blurred 
test image 
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7.4 Comparison of Edge Location/Feature Sizing Methods with Sobel Operator 

To help put the edge location and feature size measurements of Section 

7.2 in perspective, we also measured edge locations in pre-processed and post- 

processed images by a simple “seat-of-the-pants” method that might be used 

by an image processing practitioner. Our method was to simply apply HAPPI’s 

Sobel edge detection routine to the same pre-processed and post-processed 

images studied in Section 7.2, and use HAPPI’s “Pixel Analyzer” utility to find 

the coordinates of edge points in the resulting Sobel-processed images. (The 

Pixel Analyzer is described in Chapter 3, Subsection 3.3.3.) In Table 7.6, we list 

feature size measurements as could best be determined by eye using HAPPI’s 

Pixel Analyzer on Sobel-processed images; the table is similar in format to 

Table 7.3, but does not list processing time for running the Sobel routine on 

each post-processed image, as the routine’s processing time - approximately 50 

seconds on the Stellar GS1025 - was identical for each 511x511 test image. The 

numbers without parentheses in each table cell are the estimated feature sizes 

(in pixels). The numbers in parentheses in each table cell are not computed 

standard deviations of feature size as in Table 7.3, but are rather a subjective 

visual estimate (made using the Pixel Analyzer) of the width, in pixels, of the 

edge response in the Sobel-processed image. 

It was seen that at high SNR’s, a user could quite reliably determine 

feature size to within two or three pixels using the Sobel routine and the Pixel 

Analyzer. However, at low SNR’s (below about SNR=1), the output of the Sobel 

routine was so noisy as to make the image feature undetectable, and thus 

unmeasureable, by eye. Poor performance of the Sobel routine at low SNR is to 



www.manaraa.com

234 

be expected, as the Sobel masks are only 3 pixels by 3 pixels square, and are 

thus not capable of doing very much noise smoothing. 

Table 7.6. Visually estimated feature size and edge response width using Sobel 
routine and Pixel Analyzer 

Routine 
SNR 

0.25 0.33 0.5 1.0 1.5 2.0 5.0 10.0 

Pre- 
processed 
images 

' ' ' ' 

101 
(2) 

101 
(2) 

101 
(2) 

101 
(2) 

Adaptive 
Smoothing 
Filter 

■ ■ ■ too 
(2) 

100 
(2) 

101 
(2) 

101 
(2) 

101 
(2) 

Kalman 
Filter 

- - - 101 
(3) 

101 
(3) 

101 
(3) 

101 
(3) 

101 
(3) 

Median 
Filter 
7x7 

102 
(15) 

101 
(12) 

101 

(ID 

101 
(2) 

101 
(2) 

Median 
Filter 
15x15 

102 
(14) 

101 
(12) 

101 
(12) 

101 
(2) 

101 
(2) 

Mod. Adapt. 
Smoothing 
Filter 

■ ' ■ 

100 
(2) 

100 
(2) 

101 
(2) 

101 
(2) 

101 
(2) 

Root 
Filter 

- - - 101 
(2) 

101 
(2) 

101 
(2) 

101 
(2) 

101 
(2) 

Sigma 
Filter 

- - - 101 
(4) 

101 
(3) 

101 
(2) 

101 
(2) 

101 
(2) 

Weighted 
Median 
Filter 

101 
(3) 

101 
(3) 

101 
(3) 

101 
(2) 

101 
(2) 
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CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

8.1 Summary 

In this thesis, we have described and evaluated HAPPI, an integrated 

NDE X-ray image processing software package to which the author was a 

contributor. Contemporary issues in image processing were discussed to lend 

some perspective to HAPPI’s design and features, and the design objectives 

were set forth. Our evaluation of the finished product concentrated on ways in 

which it could be improved. A detailed, step-by-step procedure for extending 

the image processing functionality of HAPPI was given. This procedure 

includes an overview of such things as program control flow and data objects, 

and provides documentation that was previously missing or incomplete. The 

procedure will allow any competent C programmer to add processing routines 

to the program, and is intended to encourage the continued maintenance and 

development of the program. 

In the latter part of the thesis, we have investigated the influence of 

HAPPI’s image processing routines on image feature size. Methods of edge 

detection and feature size calculation were presented. In the presence of 

noise, such calculations will be random variables. Our measurement methods 

have been implemented so as to quantify the randomness of the 

measurements. The measurement methods were applied to idealized images of 

simple specimen geometries to get a sense of the limits of measurement 

accuracy under ideal circumstances. Test images processed with a variety of 

HAPPI’s routines were measured before and after processing, with the results 
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providing some quantification of how various processing routines affect 

feature size estimates. The measurements presented show that, in our test 

cases at least, HAPPI’s noise filters improved the feature size estimate. Other 

processing routines that were not intended as noise filters were tested and 

found not to improve, and in fact to worsen in some cases, the feature size 

estimate. 

In general, for noisy unprocessed images and noisy images processed 

with HAPPI’s noise filtering routines, the standard deviation of our feature 

size estimate was large (e.g., 60% of feature size for an unprocessed noisy 

image and 20% to 30% for processed images) at low SNR (e.g., SNR=0.25) values, 

and decreased dramatically as SNR increased to about 2.0. For SNR values in 

the range 0.25 to 2.0, HAPPI’s noise filters improved the standard deviation of 

feature size estimate by anywhere from few percent at high SNR’s to about 

300% at low SNR’s. Above an SNR of 2.0, the standard deviation of feature size 

estimate was essentially unchanged by processing. It was seen that among the 

noise filters, the median filter provided the best feature size estimate at low 

SNR’s while also having the fastest execution time. The Kalman filter gave the 

worst feature size estimate while also having the longest execution time. 

The effect of blurred edges on the feature size estimate was briefly 

investigated. It was seen that more slowly rising edges require a larger blur 

parameter to be used in our edge detection scheme. Also, slowly rising edges 

bathed in noise of a given strength had higher edge location variance than 

sharply rising edges bathed in the same noise field. Finally, it was seen that 

for an image with blurred edges, noise filtering can significantly improve the 

standard deviation of feature size estimate at SNR values above SNR=2. 
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Results from our edge location and feature size measurement scheme 

were compared with those attainable from a simple and subjective approach 

using the Sobel operator. For SNR’s above about 1.0, the two methods yielded 

similar results. Our scheme showed its utility at SNR values below 1.0; the Sobel 

operator could not produce any edge location information at such low SNR 

values. 

8.2 Suggestions for Further Work 

As suggestions for improvement to HAPPI have already been made in 

Chapter 3, we will here discuss only suggestions for further work in 

quantifying the effect of processing routines. There are many parameters 

(e.g., contrast, noise levels, noise distributions, feature edge profile) which 

may be varied in test images for feature size measurement, and the various 

processing routine parameters may be varied as well. There are also many 

more methods of finding edges than are discussed in this thesis. There is thus 

a large multidimensional space to explore in investigating the topic of 

“influence of processing algorithms on feature size,” and the work presented 

here could be extended in many directions. 

One possible topic of investigation is the optimization of filter 

parameters for purposes of edge detection and feature size estimation. Optimal 

parameters for a given filter will depend on such image characteristics as 

SNR, contrast, feature edge profile, and feature size. We saw in Chapter 6 that 

in general, the lower the SNR in an image, the larger the blurring function 

needed to achieve a given edge location performance. However, in practice we 
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cannot increase the size of the blurring function without bound. If the 

feature size is very small compared to the size of blurring function used, then 

the feature will be smeared and peak signal strength will be diminished. 

Blurring function size is also limited in practice by the size of the image being 

blurred. There is thus an interaction between minimum detectable feature 

size, SNR, image size, and the processing routines, which would be a useful 

topic for investigation. 

As mentioned in Chapter 6, it is hoped that the data presented in this 

thesis might prove useful in developing analytical expressions or empirical 

models for change in image feature size with processing. Such developments 

would be useful, for example, to an NDE inspector concerned with accuracy of 

flaw size measurements. The expressions or models could be used to judge the 

size accuracy of alternative processing schemes against other concerns such 

as detection accuracy, robustness with respect to variation in attributes of 

input images, complexity of user interaction, and computational cost- 

efficiency. 
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